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Zur Konvergenz der einzeitigen Tamm-Dancoff-Methode
beim anharmonischen Oszillator

Von H. Stumer *, F. WacNer * und F. Wanr **

(Z. Naturforschg. 19 a, 1254—1267 [1964] ; eingegangen am 13. Mai 1961)

As in the usual quantum field theory, the states, and therefore also the eigenvalue spectrum of
an anharmonic oscillator can be characterized by means of the so-called 7-functions, that is the
matrix element of the type (0| g”|j). For the calculation of these matrix elements, the equation
of motion of the anharmonic oscillator can be used to obtain an infinite set of equations, which
define an eigenvalue problem. To solve it a new set of functions, the so-called ¢-functions, are
introduced by means of a transformation, whose matrix corresponds formally to the Wick rule.
An analysis of this infinite system of ¢-equations shows that a convergent secular polynomial can
be obtained, which exists as a limiting value of the polynomials for the truncated N ¢-equation-
systems in the limit N — oc | It is therefore permissible to calculate the eigenvalues of the infinite
system in an approximate way from the truncated systems. Such an approximation procedure is the
essential content of the so-called Tamm—Dancorr method. The above mentioned convergence of the
determinants therefore provides its justification. The convergence of the eigenvalues of the trun-
cated systems to the exact oscillator values is numerically examined up to N=20. The results are

satisfactory.

In der neueren Entwicklung der Physik spielen
Modellbetrachtungen eine grofle Rolle: Durch sie
werden komplizierte Problemstellungen sowohl phy-
sikalischer als auch mathematischer Natur auf ge-
wisse wesentliche Analogievorginge reduziert und
damit einer erfolgreichen Untersuchung zugéngig
gemacht. So wurde z. B. der harmonische Oszillator
von Pranck, HeisenBerec u. a. als Modell zur Ent-
wicklung der Quantenmechanik und der relativisti-
schen Quantentheorie der freien Felder benutzt. In
ahnlicher Weise kann man mit Einschrankung be-
haupten, daf} der anharmonische Oszillator als Mo-
dell fiir die Entwicklung von nichtlinearen Quanten-
feldtheorien niitzlich ist. Dies wurde von HEIsEN-
BERG ! und von Symanzik ? gezeigt. Auf beide Arbei-
ten werden wir im Laufe der Untersuchung noch
naher eingehen. Um die notige Aktualitat der Un-
tersuchung zu gewéhrleisten, darf der anharmonische
Oszillator nicht mit den klassischen Methoden der
ScHrODINGER-Theorie behandelt werden. Vielmehr
muf} man der neueren Entwicklung der Feldtheorie
gemi Ubergangsmatrixelemente betrachten. Diese
werden in der Feldtheorie durch Ausdriicke der Art
(aly(2y) ... w(x,)| B) usw. definiert, wobei v ()
der Feldoperator ist, und (2| bzw. | #) die Quanten-
zustinde des Feldes Uber die

charakterisieren.
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Griinde, die zur Untersuchung derartiger Ausdriicke
fihren. den Fall kanonischer
Quantisierung auf Symanzix ?, fiir den Fall nicht-
kanonischer Quantisierung auf Stumer?. Beim an-
harmonischen Oszillator mufl man dann sinngemaf}
Matrixelemente der Art (a q(t;) ...q(t,) ) usw.
studieren. und aus diesen Matrixelementen physi-
kalische Informationen ableiten. Im Fall eines Sy-

verweisen wir fur

stems mit einem Freiheitsgrad, wie es der anharmo-
nische Oszillator darstellt, also das Zustandsspek-
trum. Das Studium der Ubergangsmatrixelemente
kann mit verschiedenem Komplikationsgrad ausge-
fiihrt werden. Am einfachsten ist die sogenannte
einzeitige Theorie. Diese Theorie soll im folgenden
fir den anharmonischen Oszillator diskutiert und
die Ergebnisse dieser Diskussion mit der neuen
Tamm—Dancorr-Methode verglichen werden.

§ 1. Einzeitige 7-Gleichungssysteme

Zur Untersuchung der Quantenzustinde des an-
harmonischen Oszillators gehen wir in Analogie zum
feldtheoretischen Verfahren von den Bewegungs-
gleichungen aus. Diese lauten

q(¢) =p(t). p (1) = —g*(1). (1)
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TAMM-DANCOFF-METHODE BEIM ANHARMONISCHEN OSZILLATOR

Bei einer kanonischen Quantisierung werden die g(t)
und p(t) als Operatoren betrachtet, die der gleich-
zeitigen Vertauschungsrelation (mith =1)
i[p(t),q(] =1 (2)

geniigen sollen. In diesem Fall folgt unmittelbar
durch Integration aus (2) und (1), dall der infini-
tesimale Operator der Zeittranslation des Systems,
die Gesamtenergie H, korrespondenzmiaflig dem
Hamirton-Operator der klassischen Theorie ent-
spricht und die Gestalt

HO=4p() + 1 ¢*(0) +C=Hy) +C  (3)
besitzt, wobei C eine willkiirliche Konstante ist. Im
Fall einer nichtkanonischen Quantisierung, die hier
aber nicht betrachtet werden soll, gilt (3) nicht mehr.
Vorldufig beschranken wir uns auf eine Untersuchung
mit der kanonischen Vertauschungsrelation (2).
Wiederum im Sinne der Feldtheorie soll diese Un-
tersuchung aber nicht im ScuropinGer-Bild, d. h. also
mit H(0), sondern im Heisenserc-Bild, d. h. also
mit (1) durchgefiihrt werden. Es ist aber niitzlich,
zur Erleichterung der Rechnung im Heisenserc-Bild
gewisse allgemein bekannte Fakten der Quanten-
theorie des ScHrODINGER-Bildes heranzuziehen. Dazu
zahlt zunichst die Tatsache, dal bei kanonischer
Quantisierung die Quantentheorie durch ihr Verhal-
ten auf einem Zeitschnitt vollig festgelegt ist. Dies
fihrt dazu, daB es zunichst ausreicht, im HEerse~-
BERG-Bild einzeitige Matrixelemente der Form

o = . n=0,1,...
0 (0 = (s | symg" 0 p" 0 B) (22017 @
zu betrachten, wobei unter dem Symbol sym die
Symmetrisierung des Ausdrucks ¢" p” in den ¢ und
p Operatoren zu verstehen ist. Ferner weill man, dafl
im ScHrODINGER-Bild die Wellenfunktionen des an-
harmonischen Oszillators allein in der g- oder in der
p-Darstellung vollstindig beschrieben werden kon-
nen, und daf} es zufolge des Hamirton-Operators
(3), welcher gegen die Paritidtsoperation invariant
ist, Eigenzustinde gerader und ungerader Paritit
geben mufl. Die Eigenzustinde gerader Paritat z. B.
lassen eine Entwicklung der Art

127) = ot ¢2*(0)]0) (5)
K=0

in der g-Darstellung zu, jene ungerader Paritit eine
Entwicklung der Art

|2y +1)= > o' *1¢**+1(0)]0) . (6)
F=0
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Analoge Entwicklungen gelten fiir die p-Darstellung.
Selbstverstandlich braucht man nur eine der beiden
Entwicklungen, um die Eigenzustinde zu charakteri-
sieren. Multipliziert man (5) mit (2 rj von links,
so folgt

> oF ) (0) = by i
k=0

woraus abzulesen ist, daf} zufolge der Hermitezitit
der g-Operatoren die Bestimmung der 7-Funktionen

o = (0] g% (0)| 2 ») (8)

ausreicht, um das Zustandsspektrum der Eigenzu-
stinde gerader Paritit festzulegen. Entsprechende
Uberlegungen kann man fiir die Zustinde negativer
Paritdt mit den ungeraden 7-Funktionen 75;.; an-
stellen. Da aber diese und alle folgenden Betrach-
tungen keinen Unterschied zum Vorgehen bei Zu-
stainden positiver Paritat aufweisen, beschrianken
wir uns im folgenden auf eine Diskussion der Zu-
stiande positiver Paritat allein.

Nach diesen Vorbetrachtungen kénnen wir uns
der direkten Rechnung im Hersenserc-Bild zuwen-
den. Dazu benotigen wir ein Gleichungssystem fiir
die 7-Funktionen (8). Dieses leitet man am zweck-
miéBigsten mittels einer erzeugenden Operatorfunk-
tion ab. Sie wird durch e”?® definiert, wobei z ein
willkiirlicher Parameter ist. Zweimalige Zeitableitung
der Operatorfunktion fihrt auf

dz o @ [ . x? i
et = q T g2 e* g2+ U er1),
i q+2(qe PPl g )

(9

Da g mit ¢ nicht vertauschbar ist, muf} die Ableitung
von (9) mittels der sogen. Hausporrr-Formel durch-
gefiihrt werden, welche das Ergebnis der Differentia-
tionen der einzelnen Koeffizienten der Potenzreihe
zusammenfaft.

Unter Benutzung der Bewegungsgleichungen (1)
und des HamiLron-Operators (3) erhdlt man aus (9)
durch Koeffizientenvergleich nach Potenzen von z
die Operatorrelationen (n=1, 2,...)

2n 2at+2 __ f»i 2n
2n+<2>]q az 1 (10)

+2<22n)(H0 q2n—2+q2n—2H0) +6(24n)q2n_4=0 .

Bildet man nun Ubergangsmatrixelemente von (10)
zwischen den Zustinden (0| und |2%) . so entsteht
bei Beriicksichtigung der Relation

o (1) =13’_>kexp{—iw, t} (11)
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mit w, = E2, — E, ein Gleichungssystem fiir die zur
Zustandsdarstellung benotigten 7-Funktionen (8)

- [2n+ (22n)]12n+2+w212n
2n 2n
+2(%) @+2E) ma-e+6(° ) res=0. (12)

Der Einfachheit halber wurde der Index » an den
7-Funktionen und an @ unterdriickt. Wie man sieht.
hebt sich aus den 7-Gleichungen die willkiirliche
Konstante C von (3) heraus, und es verbleibt nur
die Nullpunktsenergie £, im System, welche dem
Operator Hy = 1 p®>+ 1 ¢* zugeordnet ist?.

Das Gleichungssystem (12) ist nunmehr jenes
System, das an Stelle der klassischen Matrixmecha-
nik das dynamische Verhalten des quantisierten Sy-
stems charakterisiert. Aus seiner Analyse miissen
alle physikalischen Informationen gezogen werden,
in diesem Fall also die verschiedenen Eigenfre-

quenzen und die zugehorigen Eigenvektoren 72 mit
k=1, 005

§ 2. Transformation auf ¢-Funktionen

Wie schon erwahnt, muf} die gesamte physikali-
sche Information aus (12) gezogen werden. Abkiir-
zend konnen wir (12) in der Form

[0)2 6nm+anm(w)] T~_)m=0 (13)
5 Die 7-Gleichungssysteme fiir allgemeinere 7-Funktionen
%8, (0), d.h. fiir Ubergangsmatrixelemente zwischen
den Zustinden (a | und | #) , unterscheiden sich von jenem
fiir 73 nur dadurch, dal an Stelle von E; der Wert E,, ein-
gesetzt werden muf3. Setzt man a=/, so entsteht anstatt
des homogenen Systems (12) ein inhomogenes System fiir
die Erwartungswerte {a | g2%(0)| a), auf das wir in un-
serem Zusammenhang aber nicht einzugehen brauchen.

Die Tatsache, dal man (13) als ein verallgemeinertes Si-
kularproblem auffassen muf}, ist aus physikalischen Griin-
den naheliegend. Der mathematische Beweis dafiir wird im
folgenden erbracht werden. Abgesehen aber von dem Pro-
blem, ob das spezielle System (13) ein Sidkularproblem
sein kann oder nicht, besteht die verbreitete Meinung, daf}
unendliche zeilenfinite Gleichungssysteme grundsitzlich
nur Rekursionsformeln darstellen. Dies ist nicht der Fall,
wie folgende Betrachtungen zeigen: Am einfachsten sind
die Verhiltnisse bei zeilenfiniten, unendlichen Matrizen
0ir (w) zu durchschauen, welche von einem Eigenwert-
parameter @ abhingen und einer v. Kocu-Bedingung ge-
niigen. Bei ihnen ldft sich die unendliche Determinante
det | Oix(w)| definieren. Sofern det | Oix (w)|=0 gilt, hat
das zugehorige homogene System Oj;(w) xp=0 normier-
bare Lisungen, deren Gesamtheit den Hisert-Raum auf-
spannt. Im Gegensatz zu endlichen Gleichungssystemen hat
das homogene System Ojr(w) 2zx=0 jedoch auch fiir
det | Ojx(w)| == 0 Losungen. Man muB Oir(w) zp=0
dann als Rekursionsformel interpretieren. Enthélt die erste
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schreiben. (13) stellt dann ein verallgemeinertes
Sakularproblem dar, bei dem die zu diagonalisie-
rende Matrix a,, (w) an den Eigenwert o riick-
gekoppelt ist®, Sehen wir zunichst von dieser un-
konventionellen Riickkopplung ab, indem wir o in
@y, (w) als willkiirlichen fiir einen endlichen Wert
fixierten Parameter betrachten, so stellt man leicht
fest, daf} a,,, (®w) eine unbeschrdankte Matrix ist. Eine
solche Feststellung folgt auch unmittelbar aus der
physikalischen Betrachtung: Da der anharmonische
Oszillator ein nichtbeschrinktes Spektrum von Eigen-
werten F, besitzt, welche sich aus der Diagonalisa-
tion von a,,(w) ergeben miissen. so folgt, dal}
a,, () notwendig eine unbeschrinkte Matrix sein
muf}. Ganz allgemein lafit sich in der Funktional-
analysis beweisen, dal} bestimmte Klassen von un-
beschriankten Matrizen Spektraldarstellungen besit-
zen missen, worunter aus physikalischen Griinden
offensichtlich auch a,, (w) fallt. Es existieren aber
gegenwirtig in der Funktionalanalysis keine Metho-
den, um die Spektren von unbeschridnkten Matrizen
direkt zu berechnen. Eigenwerttheorien gibt es bis
jetzt nur fir unbeschrinkte Differentialoperatoren.
Es ist daher notig, das System (13) in solcher Weise
umzuformen, daf} es einer mathematischen Behand-
lung mit gegenwirtig bekannten Methoden zugingig
wird. Der erste Schritt in diesem Prozel3 wird durch
die Transformation von den 7-Funktionen auf die
¢-Funktionen vollzogen.

Zeile die unbekannten z,, ..., 2, , so bilden in der Rekur-
sionsformel zy,...,z;-1 die willkiirlichen Anfangspara-
meter, welche zusammen mit dem frei variablen w den
Losungsvektor bestimmen. Dieser liegt dann aber nicht
mehr im Hisert-Raum der Eigenvektoren, sondern ist
nicht normierbar. Die Losungsvektoren sind also divergent.
Analoge Verhiltnisse bestehen bei zeilenfiniten unbe-
schrinkten Matrizen, welche durch Algebraisierung von
HamiLton-Operatoren entstehen, z. B. des anharmonischen
Oszillators bei Entwicklung nach harmonischen Oszillator-
funktionen. Obwohl in solchen Fillen keine Determinante
mehr existiert, ist von der Konfigurationsraumdarstellung
die Existenz von Eigenwerten und normierbaren Eigenvek-
toren erwiesen. Fiir Nichteigenwerte kann man, wenn man
will, derartige Systeme dann als Rekursionsformeln auf-
fassen, die divergente Losungsvektoren besitzen.

Ist umgekehrt ein zeilenfiniter Operator vorgegeben, so
erhellt aus dem oben Gesagten, dal man nicht von vorn-
herein die Moglichkeit eines Eigenwertproblems ausschlie-
Ben darf. Vielmehr ist dies ein Problem, das durch Analyse
des Operators entschieden werden muf. Das heift, man
muf} untersuchen, ob sich ein Sikularproblem ausblenden
1aBt. Dies geschieht aber nicht durch Forderungen an die
Losungsvektoren, sondern durch Transformation des Ope-
rators auf eine Gestalt, welche die Moglichkeit des Sakular-
problems evident macht. Dies ist im wesentlichen das in
dieser Arbeit zur Verwendung kommende Verfahren.
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Man zerlegt dazu die Operatoren ¢(0) und p(0)
in die Operatoren

q(0) = 27"[a(0) +a"(0)],
p(0) = —i27"[a(0) —a"(0)],

wobei @(0) und a"(0) die Vertauschungsregel

[a(0).a’(0)] . =1

(14)

(15)

erfiillen. Dann wird ¢”(0) ein gemischtes Produkt
aus den nichtvertauschbaren a(0)- und " (0)-Opera-
toren. Ordnet man ein solches Produkt derart um,
daf} alle a"(0)-Operatoren links von den a(0)-Ope-
ratoren stehen, so erhilt man das normalgeordnete
oder Wick-Produkt, das man gewchnlich mit : ¢" :
bezeichnet. Wir weisen darauf hin, dafl weder (14)
noch (15) noch die Normalordnung auf den harmo-
nischen Oszillator beschriankt sind. Es handelt sich
vielmehr um ganz allgemeingiiltige Operationen fiir
Systeme mit einem Freiheitsgrad. Wir behaupten
nun, dal}

en_ S (LY@ e,
9 l;‘(4> n@n—2nt 94 5
coon. _ (1Y @n)! ey
und : ¢°": —l;< 4) Hen—an1? (17)

gilt. Den Beweis fithrt man in Analogie zur Ableitung
der 7-Gleichungen mittels einer erzeugenden Funk-
tion %@+ _ fiir welche sich die Relation

ez(a++a) — ez";"? eTat oz (18)
beweisen lafit. Durch Koeffizientenvergleich nach z
folgt dann (16), und in dhnlicher Weise beweist man
die Umkehrformel (17). Multipliziert man (16) und
(17) von links mit (0| und von rechts mit |2y)
und bezeichnet das normalgeordnete Matrixelement
mit

P =(0]|:¢g%:[27y), (19)

so geht (16) und (17) in eine lineare Transforma-
tion zwischen den 7- und den ¢-Funktionen (19)
iiber. Ohne den urspriinglichen Ausgangspunkt der
Operatorrelationen (16) und (17) zu beriicksichti-
gen, kann man dann diese Transformation zwischen
den 7- und den ¢-Funktionen als einen autonomen
Vorgang auffassen. Im Hinblick auf die Moglichkeit
einer Verallgemeinerung dieser Wick-Regel ist es da-
bei zweckmiBig, daB man den Faktor (1/4)! durch
(4/2)" mit einem willkiirlichen 4 ersetzt. So ent-
stehen aus (16) und (17) die Relationen

T:én =an (A) ‘p.”.’k (20)
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und 95.;_"'11 zcnk( —A) t;k (21)
mit  Cp(d)=@n! @2k (22)

2k)! (n—k)!

Fir k>n verschwindet (22) per definitionem des
Fakultatsausdrucks. FaBt man die 73, (n=0,1,...)
als Losungsvektor des Zustands |2y) auf, so be-
schreibt (20) und (21) eine lineare Transformation
zwischen den 7- und den ¢-Vektoren. Diese lineare
Transformation ist nicht ausgeartet. Man kann daher
das System (13) von der 7-Darstellung auf die ¢-
Darstellung transformieren, ohne seinen mathemati-

schen Inhalt zu zerstoren. Man erhilt unter Anwen-
dung von (20) und (21) aus (13) das System

(@2 0+ Cat' (4) @;(@) Cin(A)] @5, =0  (23)
und unter Berticksichtigung von
Cre' (4) =Cu(—4) (24)
entsteht
[@? O+ Bum (@, 4) ] 3 =0 (25)
mit

By (@, A)E(2n+1) n6n+1,m+2An(8n2+1) 6"7”
2 6!

+< 6n) A4 2 611-3, m

+(22n) [342(8n*—8n+3)—2(w+2E)] dy-1.m

—+4!(%:>[44ﬁ(n—-1)—v}]5n,zm. (26)

Es fragt sich nunmehr, ob das transformierte System
(25) zur mathematischen Behandlung besser geeig-
net ist als (13). Dieses Problem werden wir im
niachsten Paragraphen ausfithrlich diskutieren. Zu-
néchst soll hier nur noch auf die bisher bekannt ge-
wordenen Losungsvorschlage eingegangen werden.
Diese bestehen einerseits aus der sogen. neuen Tamm—
Dancorr-Methode, andererseits aus der sogen. Funk-
tionalgleichungsmethode. Bei der neuen Tamyv—DAN-
corr-Methode geht man von der Beobachtung aus,
dal beim harmonischen Oszillator, bei dem die 7-
Funktionen und die ¢-Funktionen direkt berechnet
werden konnen, die 7-Funktionen durch

= (2y) 1] (f?_";)" (,})n_? (harmon. Osz.) (27)

gegeben werden, die ¢-Funktionen dagegen fiir den
exakten Wert von 4 =1/2 nach (21), (22) und (27)
durch

@5 =[(27)!1"0,,, (harmon. Osz.) (28)
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Dies bedeutet, dafi die 7-Funktionen des harmoni-
schen Oszillators fiir keinen Eigenwert normierbare
Vektoren darstellen. wogegen die ¢-Funktionen fiir
alle endlichen Eigenwerte normiert werden konnen.
In Analogie schliefit man daraus, daf} auch fiir den
anharmonischen Fall dhnliche Verhiltnisse vorliegen
mifiten, d. h. dal} es sich bei den anharmonischen
7-Funktionen um nichtnormierbare. bei den ¢-Funk-
tionen dagegen um normierbare Vektoren handeln
sollte. Da unendliche Gleichungssysteme mit normier-
baren Eigenlosungen unter bestimmten Bedingungen
abgebrochen und somit durch endliche Gleichungs-
systeme approximiert werden konnen, so werden in
der neuen Tamym—Dancorr-Methode die ¢-Gleichun-
gen (15) einfach abgebrochen und die ¢-Funktionen
tir ein £ >k, gleich Null gesetzt. Von Hersenserc !
wurden die Oszillatoreigenwerte am ¢-Gleichungs-
system in der p-g-Darstellung in erster, zweiter und
dritter Ndherung mit gutem Erfolg berechnet. Es ist
aber klar, dal} ein solches Vorgehen noch einer tie-
feren Rechtfertigung bedarf, da es auf einer ad hoc
Analogie aufgebaut ist. Wir werden darauf im letz-
ten Paragraphen noch genauer eingehen. Von Symax-
z1k 2 wurde andererseits ein funktionalanalytischer
Weg eingeschlagen. Wie wir gesehen haben, spielen
bei der Ableitung der 7- und der ¢-Gleichungssysteme
die erzeugenden Funktionen e*(¢"*% hzw, e” ") eine
bedeutsame (wenn auch mehr technische) Rolle. Es
liegt daher nahe. nicht die aus den erzeugenden
Funktionen bzw. Funktionalen hervorgehenden 1-
bzw. ¢-Gleichungen. sondern die Funktionale selbst
zu studieren. Symanzik betrachtet dazu die Groflen

fas (2, y) = (aeizativr|B) . (29)

Fir diese Groflen kann man mittels der Bewegungs-
gleichungen (1) und des Hamivron-Operators (3),
sowie der Vertauschungsrelationen (2) Differential-
gleichungen in z und y fiir (24) aufstellen. Fiir den
Fall des harmonischen Oszillators gelingt die direkte
Integration dieser Gleichung. fiir den Fall des an-
harmonischen Oszillators versucht Symanzik in Ana-
logie zum Ubergang vom 7- zum ¢-Gleichungssystem
aus f.s einen konvergenzerzeugenden Faktor abzu-
spalten. Es ist jedoch bisher nicht moglich gewesen,
eine Losung fiir die resultierenden Gleichungen an-
zugeben. da strenge Losungen nicht bekannt sind
und numerische Losungen von Randbedingungen
ausgehen miifiten, die ebenfalls unbekannt sind. Bei
der nachfolgenden Behandlung des ¢-Gleichungs-
systems werden wir Methoden benutzen, die wahr-
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scheinlich kein Analogon in der funktionalanalyti-
schen Betrachtung aufweisen, so dall der direkten
Untersuchung des ¢-Gleichungssystems vor dem
funktionalanalytischen Verfahren von uns der Vor-
zug gegeben wird.

§ 3. Reduktion auf Systeme mit konvergenten
Siakularpolynomen

Im vorangehenden Paragraphen wurde das 7-Glei-
chungssystem (13) auf das ¢-Gleichungssystem (25)
transformiert. Man erkennt aber leicht, daf} der
Ubergang von den 7- zu den ¢-Funktionen noch
keine mathematische Behandlung des Eigenwert-
problems mit den gegenwértig bekannten Methoden
zuldfit. Sieht man zunéchst von der w-Abhéngigkeit
der Matrix B,,, in (26) ab und betrachtet ® in B,,,
als Parameter. so stellt das transformierte Glei-
chungssystem (25) genau wie das Ausgangssystem
(13) ein Sakularproblem konventioneller Art fir
den unbeschriankten Operator ;0;; dar. Daraus
folgt., dali auch die Matrix B,,, notwendig unbe-
schrankt sein muf}. was unmittelbar aus (26) abge-
lesen werden kann. Um das Eigenwertproblem trotz-
dem zu berechnenen, mufl man demnach durch eine
weitere Operation die konventionelle Form des Sa-
kularproblems (13) bzw. (25) beseitigen. Dies ge-
schieht durch die Abbildung ”

. 2n)!
P2n= ‘) Qn’
n:

(30)

und gleichzeitige Multiplikation der n-ten Gleichung
(25) mit [2(n!)/(2n)!][An(8n%+1)] L.
Das Gleichungssystem (25) geht daraufhin tber in

von

App(®, 4) @ =0 (31)
mit A, (0, 1) = _230;,(71, 0, A) 8y kms  (32)
k=1
wobei die a;.(n,w, A) durch
ay(n, , 1) = ‘*]‘é’;ﬁi) :
2 w?

ag(n,w, A) =4 — n A@nit1)

7 Bei einer Abbildung wird der Vektor allein transformiert,
bei einer Transformation dagegen die gesamte Gleichung
auf ein anderes Bezugssystem transformiert. Welche der
beiden Auffassungen fiir eine Vektortransformation ein-
genommen wird, ist, sofern nicht geometrische Invarianzen
vorhanden sind, eine Frage der mathematischen Zweck-
maBigkeit.



TAMM-DANCOFF-METHODE BEIM ANHARMONISCHEN OSZILLATOR

a_i(n,w,4) =[34(8n>—-8n+3)
— 3 A Y (w+2Ey)]. 1

nitl’

— 3(n_1)2_1(n— 1
a—?(ns CU.,A) = [8A (Tl 1) 2(" 1)] (8 n2+1)
a_s(n, 0, 4) = '0~D 0= (33)

8n2+1
definiert werden.

Wie man durch Inspektion von (31) und (33)
erkennt, hat man dadurch die konventionelle Form
des Sakularproblems fiir w, die notwendig auf eine
unbeschrankte Matrix fithren muf}, beseitigt und
ein Eigenwertproblem von allgemeinerem Typus ge-
schaffen. Dieses Problem besteht in einer Ausdeh-
nung der allgemeinen Theorie linearer Gleichungs-
systeme mit endlich vielen Variablen auf solche mit
unendlich vielen. Verschwindet fiir endlich
Freiheitsgrade die Determinante des Systems, so ist
das homogene System losbar, andernfalls nur das
inhomogene. Das Verschwinden der Determinante
eines solchen Systems in Abhingigkeit von einem
Parameter, z. B. w, definiert daher ein verallgemei-
nertes Sakularproblem fiir diesen Parameter. In die-
sem Sinne soll (31) nunmehr untersucht werden.
Aus (33) folgt unmittelbar, daf} 4,,,(w, 4) fir alle
endlichen o ein beschrinkter Operator ist. Diese
Eigenschaft reicht im allgemeinen jedoch nicht aus,
um das unendliche Gleichungssystem (31) einer Be-
handlung in Analogie zur Theorie endlicher Glei-
chungssysteme zugingig zu machen. Dazu miissen
nach dem gegenwartigen Stand der Theorie unend-
licher Gleichungssysteme die sogen. v.Kocuschen
Bedingungen erfiillt sein, welche die Existenz der
unendlichen Determinante det| A4,,,| sicherstellen.
LaBt sich namlich eine derartige Determinante sinn-
voll definieren, so ist es mit ihrer Hilfe méglich, die
Cramersche Regel und damit die Theorie endlicher
Gleichungssysteme auf (31) zu iibertragen. Da aber
die v. Kocuschen Bedingungen nur hinreichende Be-
dingungen darstellen, so ist nicht ausgeschlossen,
daB in Spezialféllen auch unendliche Matrizen, wel-
che keiner v. Kocuschen Bedingung geniigen, die De-
finition einer unendlichen Determinante zulassen
und sinnvolle Losungsvektoren besitzen. Wir zeigen
im folgenden, dal} die Matrix A4, (w, 4) derartige
Eigenschaften besitzt, und dal damit das Eigenwert-
problem fiir w einen wohldefinierten Sinn erhailt.
Wir beginnen mit der Determinantendefinition und
behandeln die zugehorigen Eigenvektoren im folgen-
den Paragraphen.

viele
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Zur Definition der unendlichen Determinante ver-
wenden wir die klassische Methode der Determinan-
tenfolgen: Das System (31) wird bei N Zeilen und
Spalten abgebrochen. Die zugehdrige Determinante
Dy ist dann als Determinante eines endlichen Sy-
stems eindeutig definiert. Sodann untersucht man
lim Dy und definiert den Grenzwert, sofern vor-
N— o0
handen, als Wert der unendlichen Determinante
det A,, . Das Studium der Folge Dy ist nur mog-
lich, wenn man eine Vorschrift zur Berechnung von
Dy angeben kann, welche die viel zu komplizierte
direkte Berechnung von Dy aus der Definitionsfor-
mel zu umgehen gestattet. Diese Vorschrift besteht
in unserem Falle aus einer Rekursionsformel. Die
Abschnittsdeterminante Dy wird durch

Dy=det|4,, (0. 4)] (n,m=1,....N) (34)

definiert. Entwickelt man A4,,, in (34) nach der letz-
ten Spalte und verfdhrt ebenso mit den dabei auf-
tretenden Unterdeterminanten, so ergibt die Zusam-
menfassung dieser viermal zu wiederholenden Pro-
zedur die Rekursionsformel

—Dy+ay(N) Dy_y—ay;(N—1) a_y(N) Dy _,
+a;(N=1) a;(N—=2) a_»(N) Dy _5 (35)
—a;(N—-1) a;(N—=2) ay(N—=3) a_3(N) Dy_4=0,

wobei wir zur Abkiirzung fiir a; (N, ®, 4) nur a; (N)
geschrieben haben. Die Rekursionsformel gilt ab
N = 5. Die Determinanten D, ... D, miissen direkt
ausgerechnet werden.

Betrachtet man die Rekursionsformel (35) als ein
Gleichungssystem fiir die Unbekannten Dj...Dy,
so kann man N — ~ gehen lassen und erhilt ein
unendliches Gleichungssystem, dessen Losungsvektor
Dy (N=5, 6,...) die gewiinschte Folge von Deter-
minanten liefert.

Zur Diskussion der Losungen dieses Systems kann
man sich den ganzzahligen Index N zunichst durch
eine reelle Variable x ersetzt denken, wodurch (35)
in eine Differenzengleichung vierter Ordnung iber-
geht. Die Losungen der Differenzengleichung stim-
men dann bei geeignet gewahlten Anfangsbedingun-
gen fiir ganzzahlige  mit den Losungen der Rekur-
sionsformel (35) iiberein. Da samtliche Koeffizien-
ten a;,(N) rationale Funktionen von N und damit
auch von z sind, so ist die (35) zugeordnete Diffe-
renzengleichung eine Gleichung mit rationalen Ko-
effizienten 8. Das sogen. charakteristische Polynom

8 E. Norrunp, Differenzengleichungen, Verlag Springer, Ber-
lin 1924, Kap. 11 —13.
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dieser Gleichung besitzt eine vierfache Nullstelle,
und die Gleichung weist daher einen Punkt der Un-
bestimmtheit auf. Diese Eigentiimlichkeit, welche
ihren Ursprung in der Wick-Regel hat, ist ganz
wesentlich: Hatte das charakteristische Polynom
einen Punkt der Bestimmtheit, so konnte durch
lim Dy(w) kein Sakularproblem fir o definiert
N— o

werden, weil die zugehorige Asymptotik dies ver-
hindern wiirde. Andererseits werden fir einen Punkt
der Unbestimmtheit die Losungen durch komplizierte
Newroxnsche bzw. Fakultitenreihen dargestellt, deren
m-Abhangigkeit schwierig zu analysieren ist. Wir
werden daher nicht den Versuch unternehmen, die
Losungen Dy (w) explizit darzustellen. Es ist viel-
mehr zweckmélig, sich auf funktionentheoretischem
Wege Informationen tiber die w-Abhéngigkeit von
Dy(w) im limes N — oc zu verschaffen, wobei wir
dann nur ein einziges, allerdings sehr wesentliches
Theorem aus der Theorie der Differenzengleichungen
verwenden werden. Fiir den funktionentheoretischen
Ansatz stellt man zunichst mittels der Rekursions-
formel (35) fest, dall Dy(w) ein Polynom 2 N-ten
Grades in o sein mull. Nach dem Fundamentalsatz
der Algebra folgt daraus, dal sich Dy(w) in der
Form

2N
Dy(w) =C(N) ]J (wa(N) —w) (36)

schreiben lassen muB}, wobei wa(N) (a=1,...,2N)
die Nullstellen des Polynoms sind. Der Wert w =0
kann keine Nullstelle des Polyoms sein, da dieser
Wert dem inhomogenen System der Vakuumerwar-
tungswerte der 7-Funktionen zugeordnet ist, zu
deren eindeutiger Berechnung die Dy(0) 30 sein
miussen. Im Hinblick auf den Grenziibergang N — ~
schreiben wir (36) in die Form

Dy(w) =r(N,w) Dy(w) (37)

um, wobei wir nach dem WEiersTrassschen Produkt-
satz Dy (w) durch

on

N
. _ ,(U
Py(w) =[] 1 wa(N))exp{f(N, wo)}  (38)
definieren, und r (N, ) durch

2N
r(N, w) =C(N)]=1[exp{ —f(N,a, w) }wa(N). (39)

Die Funktionen exp{f(VN,a, ®)} werden entspre-
chend dem WEeiersTtrassschen Theorem als konver-
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genzerzeugende Faktoren hinzugefiigt. Sie tragen zu
den Nullstellen von Dy (w) nichts bei. Sofern

lim wa(N) = wa (40)
N— oo
fir alle a gilt, folgt unmittelbar daraus
lim @y (w) = D(w) (41)

N— oo

mit @ (w) als einer ganzen Funktion. d. h. also einer
Funktion. welche fiir alle endlichen @ einen end-
lichen Wert annimmt. Damit ist der limes von Dy(w)
wohldefinierbar als

lim Dy (w) = lim r (N, ®) lim @y (w)

N— oo N— N— oo

=®(w) limr(N, w).

N— o0

(42)

Da der Faktor r(N,w) stets nullstellenfrei ist, lie-
fert unter der Voraussetzung (40) die Formel (42)
also ein wohldefiniertes Séakularproblem in w. Es
verbleibt demnach der Nachweis der Relation (40)
als eigentliches Problem. Wie in (40) gefordert,
braucht man nur den limes N — o zu betrachten.
Fiir sehr grofle NV geniigt Dy (w) der aus (35) und
(33) ableitbaren asymptotischen Gleichung

Dy(w) —4Dy_1(®) +6Dy_s(w) (43)
—4 (14K A{,)D.\v_g(w) +Dy_s(w) =0

mit &y = — (4 4) 2. Diese asymptotische Gleichung
benutzen wir nun fiir den Beweis von (40). Wir
demonstrieren das Beweisverfahren zunichst an einer
sehr groben Niherung. Wir denken uns die Null-
stellen wa(/N) nach steigenden Betrdagen geordnet,
so daf} fur alle NV eine Anordnung der Art

Lo, (V) <lwe(N)]< ... <] way(N)|  (44)

gelten moge (der Einfachheit halber nehmen wir nur
einfache Nullstellen an). Sodann betrachten wir eine
sehr kleine Umgebung des Nullpunktes der w-Ebene.
Dann setzen wir ndherungsweise in dieser Umgebung

Dy(w) ~r(N, 0) (1_ & )

45
o () (45)

wobei sich die konvergenzerzeugenden Faktoren im
Produkt mit jenen von r(N,w) gegenseitig weg-
heben, so dal} nur r(N,0) als Faktor ibrigbleibt.
Zur Abkiirzung setzen wir im folgenden

r(N,0) =r(N).

Setzen wir ferner z«" = 1/wa(N), so ist (45) unter
der Annahme giiltig, daB} z;V > z/" (a=2,...,2N)
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erfiillt ist. Diese Annahme setzen wir zunichst vor-
aus. Substituiert man dann (45) in (43), so ergibt
ein Koeffizientenvergleich nach « die beiden Glei-
chungen

r(N) —4r(N=1) +6r(N—2)
—4(1+k1$)r(1\’—3) +r(N—4) =0,

z¥Nr(N) =42,V 1r(N=1) +62"2r(N-2)

_4(1 45 i,) 2V 3 r(N=3)+2,/4r(N=4) =0.
| (46)
r(N) muBl demnach simultan den beiden Gln. (46)

geniigen. Fafit man diese Gleichungen als Differen-
zengleichungen auf, so ist eine notwendige Bedin-
gung fiir die Existenz einer simultanen Losung die
Ubereinstimmung der charakteristischen Polynome
der beiden Gleichungen. Diese Ubereinstimmung be-
steht aber nur, wenn

ZIAV:zIN—V (r=1,...,4) 47)

gilt. Da andererseits r (V) nach Ableitung eine simul-
tane Losung von (46) sein muf}, mu} auch (47)
gelten. Daraus folgt aber unmittelbar

lim w, (V) =w,. (48)

N—>oo
Nunmehr kann man unter Beriicksichtigung von (48)
dasselbe Verfahren fiir w,(N) ausfithren usw., bis
man schlieBlich die Giiltigkeit von (40) fir samt-
liche o erwiesen hat. Das geschilderte Verfahren ist
nur insofern unvollkommen, als in den Beweis die
Voraussetzung z;¥ > z." (a=2,...,2N) usw. ein-
geht. Diese Voraussetzung ist jedoch nicht wesent-
lich: Um dies einzusehen, befreien wir uns rekursiv
davon. Das heiflt, wir nehmen zunichst an, dal
N, 2V >z (a=3,...,2N) erfiillt ist. Wir ver-
mindern also unsere Annahme um eine Ungleichung.
Unter dieser Voraussetzung erhilt man dann fiir

9 Vermutlich 148t sich der Renormierungsfaktor r(N) auch
als Determinante einer unendlichen Matrix Ky, definie-
ren, so daB der Zerlegung Dy=r(N) Py im Gleichungs-
system (31) die Abspaltung eines konvergenzerzeugenden
Matrixfaktors entsprechen wiirde. Nimmt man die Existenz
einer solchen Matrix Ky, an, so wire

r(N)=det | Knm |
und man konnte zufolge der Zerlegung

Apm=Kpm=+Vnm
durch die Transformation

Pm =Koz @/’

(n,m=1,...,N)
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Dy(w) in einer kleinen Umgebung des Nullpunktes
der w-Ebene
Dy(w)=r(N)[1 — w(z,¥ + z,Y) + w? 2,V z,¥]. (49)
Koeffizientenvergleich in w ergibt, da} r(N) simul-
tan drei Differenzengleichungen erfiillen muf. Dies
ist in Analogie zur vorangehenden Argumentation
nur dann méglich, wenn die Relationen
V2V =2V 2,V

le 22N= le—v Z2N—v

(50)

erfillt sind. Diese Relationen sind aber nur fiir
2V =2""" und z,"=2z,""" erfiillbar, woraus wie-
derum die Konvergenz folgt. Analog kann man wei-
tere Ungleichungen aufgeben. Hat man insgesamt
0 Ungleichungen aufgegeben, d.h. setzt man nur
Vo 2V > 2 (a=0+1,...,2N) voraus, so
erhilt man durch Koeffizientenvergleich genau o
Gleichungen fiir die Zahlen z,V7%,...,z,"Y”, deren
rechte und linke Seiten fiir verschiedene » strukturell
vollig gleich sind. Wie in (50) folgt daraus unmit-
telbar z,V N=¥ usw., so dafl man
erkennt, dafl mit dem angegebenen Verfahren die
Relation (40) ohne zusatzliche Voraussetzungen be-
wiesen werden kann. Wir haben demnach hier einen
Fall vor uns, bei dem die nur beschrinkte Matrix
Apm(w,A) bis auf einen nullstellenfreien ,,Renor-
mierungsfaktor eine wohldefinierte unendliche De-
terminante besitzt, deren Nullstellen gegen Grenz-
werte konvergieren. Zufolge dieser Nullstellenkonver-
genz kann man daher das Sakularproblem (31) durch
die Folge der abgebrochenen Systeme approximieren,
wobei man im limes N — c die Losung des unend-
lichen Systems (31) erhalt. Dafl mit der Nullstellen-
konvergenz auch eine Eigenvektorkonvergenz vor-
handen ist, werden wir im nachsten Paragraphen
zeigen. Das Problem, das t-Gleichungssystem in ein
mathematisch faBbares Sikularsystem umzuwandeln,
ist daher durch die Anwendung der Transformation
(20) und der Abbildung (30) sowie durch den Kon-

vergenzbeweis gelost®.

N—»
1 s

=z 2N =2,

das Gleichungssystem (31) in
[0np+Vam K;}a] @,/=0
iiberfiihren, wobei
det | Onp+Vam Kmp | = D
sein miilte. Ein solches Gleichungssystem wiirde dann die
Anwendung der Frepnoum-Theorie gestatten und daher

einen weiteren Konvergenzbeweis liefern. Diese Frage soll
in weiteren Arbeiten genauer untersucht werden.

(n,m,p=1,...,N)



1262

§ 4. Abschédtzung der Nullstellen- und

Eigenvektorkonvergenz

Zusitzlich zum Konvergenzbeweis der Nullstellen-
folgen wa(N) im vorangehenden Paragraphen ist
eine Abschitzung der Starke dieser Konvergenz mog-
lich. Wiederum beschrinken wir uns auf den Fall
sehr grofler N. Wir miissen aber, um zusitzliche In-
formationen zu § 3 zu erhalten, diesmal auch die
asymptotischen Glieder zweiter Ordnung in (35)
beriicksichtigen. Unter Einschluf} dieser Glieder lau-
tet dann die zu (35) gehorige asymptotische Glei-
chung

Dy(@) —4Dy_y(w) +6(1+ /’;2) Dy_s(w)

—4(1+ ']{Vl+ :;)Dw—z(w) + (1+ ;:)DA\>4(&))
(51)

=0.
Die Konstanten k, . ..k, kann man direkt numerisch
aus (35) berechnen. Wir unterdriicken hier jedoch
ihre explizite Angabe, da die speziellen Werte von
ky...k, fur das folgende ohne Belang sind, mit
Ausnahme der Tatsache, daB k; ...k, =0 gilt.

In Gl. (51) setzen wir nun den Wert von Dy (w)
an der speziellen Stelle @ =q ein, wobei . nach
(40) der Grenzwert von mq(N) sei. Nach (36) ist
Dy (wa) gleich

T~ o

Dy(wa) =C(N)

N
!(w,g(N) —wa).  (52)

I3
Um aus dem Ansatz (52) mittels der Gl. (51)
Schlisse tber die Art der Nullstellenkonvergenzen
ziehen zu konnen, ist es notig, die einzelnen Fakto-
ren von (52) in ihrer Abhéngigkeit von N ndher zu
untersuchen. Schreibt man zur Abkiirzung

wp(N) —wa = dj (N), (53)

so sind die Folgen dj(N) zufolge der Konvergenz
der ws(N) gegen die Grenzwerte wg ebenfalls kon-
vergent, d. h. es gilt
lim dj(N)=dj.
N— oo
Da die Zahlen dj(N) fiir /= a gegen Grenzwerte
d} streben, welche =0 sind, und im allgemeinen

(54)

sogar sehr grofle Werte annehmen, wenn man die
Eigenwerte ws und s mit dem Spektrum des an-
harmonischen Oszillators identifiziert, so setzen wir
wegen der bewiesenen Konvergenz nidherungsweise

d}(N) =~ d} in (52) ein. Fir f=oa dagegen kann

H. STUMPF, F. WAGNER UND F. WAHL

man eine solche Naherung nicht vornehmen, da die
d%(N) eine Nullfolge sind. Wegen der aus (39)
folgenden Relation

2N
C(N) =r(N) ”~]1 w,(N)] 1 (55)
laf3t sich (52) daher in der Gestalt schreiben
2N 2N
Dy (wa) =r(N) d% (N) [f{ (:),.(]V)]"?[ll dy. (56)
P p=

+a
Setzt man nun entsprechend unserer fir die d7(N)
verwendeten Ndherung auch o, (N) =, und beach-
tet, dall fiir grole NV und festes a zufolge der An-
ordnung (44) (wy.;) 'd¥-r(k=1,...,4) gegen
1 strebt. so ergibt Substitution von (56) in (51)

bei gleichzeitigem Herauskiirzen aller gemeinsamen
Faktoren die Gleichung

F(N) d2(N) —4r(N—=1) dZ(N—1)
+6<1+ ’;;,)r(zv_z) d%(N —2)

—4(1+ %+ 38) #(N=3) d3 (N -3)

+(1+ :‘Z)r(N—ZL) d*(N—4)=0. (57)
Zur Konvergenzabschitzung setzen wir nun
wa(0) —wa(0o+1) =27 . (58)
Dann gilt zufolge (53) und (58)
dy(N+Fk)= Z A (59)

o=N+k

(59) kann man nun in (57) eintragen und nach den
neuen Variablen 2} umordnen, wobei man zur Re-
duktion der entstehenden Ausdriicke die von r (V)
erfillte Gl. (46) benutzt. Wir schreiben das Ergeb-
nis dieser Umformung nicht explizit an, sondern
dividieren sogleich die entstandene Gleichung durch
r(N). Nun setzen wir als Hypothese voraus, daf} der
limes N — ~ von r(N)/r(N—1) existiert1?. So-
fern er existiert, folgt aus der asymptotischen Gl.
(46) sofort, daf} er gleich 1 sein muf}. Die Gl. (57)
geht damit in

—2¥-1 +3 2N -2 —3(1+ . kl)£’§'—3+x°§'74

3N
(60)
10 Bei entarteten Wurzeln der charakteristischen Gleichung

existiert dieser limes nur unter gewissen Stabilitdtsvoraus-
setzungen, s. Norrunp 8, S. 306.
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iber, wobei wir auf der linken Seite die Glieder

zweiter Ordnung, d.h. die Glieder mit N2, ver-

nachlassigt haben. Diese Gleichung hat aber die
@ const

konvergente Losung
1
2y =—r— +0(=),
A N (/va)

womit eine Abschdtzung des Konvergenzgrades der
Nullstellen durchgefihrt ist. Wie schon in § 3 an-
gekiindigt, untersuchen wir schlielich noch das Ver-
halten der den Eigenwerten w«(/N) zugeordneten
Eigenvektoren. Auch hier konnen wir uns fiir den
Konvergenzbeweis bei endlichem a auf das asympto-
tische Verhalten der Eigenvektoren beschranken. Wir
setzen zunidchst in (31) den speziellen Eigenwert
0 = Wq ein, wobel (31) in

Ay (wa, A) @ =0 (62)

iibergeht. ¢, sei dann der Eigenvektor zum Eigen-
wert wa . Bekanntlich ist ein solcher Eigenvektor nur
bis auf eine multiplikative Konstante bestimmt; d. h.
mit ¢,% ist auch ¢ @,* ein Eigenvektor. Um diese
Willkiir zu beseitigen, kann man an Stelle der qﬂ;ﬁ
die Verhaltnisse

(61)

En =@m/P1" (63)
betrachten. Diese sind nunmehr eindeutig festgelegte
GroBlen. Zu ihrer Berechnung dividieren wir (62)
durch ¢9* und nehmen die Substitution n=»,
m= u+1 usw. Damit geht (62) in

S Alwa, 4) & = — At (0a, 4)
u=1 (V=].,.-., oo) (64')

iber. Um die Indizierung deutlich zu charakterisie-
ren, haben wir ausnahmsweise an Stelle der Sum-
menregel explizit das Summationszeichen verwendet.
Man erkennt sofort, dal es sich bei (64) um ein
System mit einer beschriankten Matrix handelt. Die
Determinante der Matrix A,.(wa, 4) ist ungleich
Null, wie man aus der Formel

o0

det | Avu(wa, 4)|= J] 227127

22 A8 +1) (65)

entnimmt. Die Gln. (64) konnen daher aufgelost
werden. Es geniigt dabei den limes u— ~ zu be-
trachten. Man erhalt dafir aus (64) die asymptoti-
sche Relation

2 g 3 g /
it A ARG AP o5 A5 5=0.

Wie schon bei der Determinantenrekursionsformel,
so kann man auch (66) als eine Differenzengleichung
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in u auffassen, welche fir ganzzahlige u die ge-
wiinschten Losungen liefert. Das charakteristische
Polynom dieser Gleichung ist ebenfalls entartet, und
zwar hat es die vierfache Wurzel 1 = 1 4. Nach einem
Satz von Perron 1! gilt in diesem Fall

lim sup 15]%71 =14 (67)
‘u—)OO
oder |§u} (A1 +e)-, (68)

wobei ¢ beliebig klein ist. Fiir 4<2 ist dieses &,
dann quadratsummabel. Da das physikalische 4=}
ist, so hat man im physikalischen Bereich der Wick-
Regel auch die Konvergenz der Eigenvektoren nach-
gewiesen, womit die Existenz eines Losungssystems
von Eigenwerten und Eigenvektoren fiir (31) end-
giiltig nachgewiesen ist.

§ 5. Rechtfertigung der N.T.D.-Approximation

Die im vorangehenden durchgefiihrten Betrach-
tungen ermoglichen uns nun, die von HEISENBERG
benutzte N.T.D.-Approximation fiir den Fall des an-
harmonischen Oszillators streng zu rechtfertigen.
Wir rekapitulieren dazu nochmals kurz die Methode
der N.T.D.-Approximation.

Wir gehen vom Gleichungssystem (25) aus. Fir
dieses System wird

Pom=0, m>N (69)

gefordert, wobei NV eine fixierte ganze Zahl sein soll,
und an Stelle von (25) wird das endliche Gleichungs-
system

N

Z [‘w2 6nm+Bnm(w= A)] P2m=0

m=1

(70)
betrachtet. Die Eigenwerte @&,(/N) folgen dann aus
der Determinante von (70) durch die Bedingung

det | @2 8,0+ By (@, 4)| = Dy (w, 4) =0. (71)
Es wird behauptet, daf}

lim @, (N) =w,

N— o

(72)

gegen die tatsachlichen Eigenwerte des Systems kon-
vergiert.

Wir betrachten zunédchst die Forderung (69).
Aus (68) zusammen mit (30) folgt, dal3

L LT ST

1
m— oo m.

(73)

11 Joc. cit. 8, S. 309—310.
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wird. Die bei der N.T.D.-Approximation vorausge-
setzte Relation (69) ist demnach nicht giiltig. Dies
tut aber der Giiltigkeit der N.T.D.-Methode selbst
keinen Abbruch, da die Relation (69) vollig tiber-
fliissig ist und nicht vorausgesetzt werden muf}. Es
geniigt vielmehr. nur die Folge der abgebrochenen
Gleichungssysteme (70) zu betrachten, ohne eine
Aussage uber die Konvergenz der ¢-Funktionen
hinzuzufiigen.

Um diese Aussage zu bekriftigen, ist es wichtig
zu bemerken, daf} die Forderungen (69) und (70)
nicht logisch konsistent sind, da (69) zusatzlich zu
(70) noch weitere Gleichungen, namlich

N
Z [0)2 671171 +an((')a A)] Pam= 0

m=1 (n=N+1,..., ) (74)

impliziert, welche bei innerer Konsistenz von (69)
und (70) erfiillt werden miifiten. Das bedeutet einen
Widerspruch, da die s, bereits aus (70) eindeutig
bestimmt sind. Beim praktischen Vorgehen werden
die Zusatzbedingungen (74) ignoriert, vom theore-
tischen Standpunkt diirfen derartige Zusatzbedin-
gungen aber iberhaupt nicht gestellt werden. Als
den eigentlichen Inhalt der N.T.D.-Methode betrach-
ten wir daher nicht die Aussage der Relation (69),
sondern die Frage der Konvergenz der Eigenwerte
des abgebrochenen Gleichungssystems (70) gegen
die Eigenwerte des unendlichen Gleichungssystems
(25). Um dieses Problem zu behandeln, untersuchen
wir zunichst jene Gréfe, aus der die Eigenwerte ab-
geleitet werden. Dies ist Dy (w, 4). Der Wert dieser
Determinante kann leicht berechnet werden, indem
man vom ¢-Funktionensystem zum ¢ -Funktionen-
system iibergeht. Unter Beriicksichtigung der Deter-
minantenmultiplikationsregeln bei der Abbildung
von ¢ auf ¢’ folgt unmittelbar

Dy (o, 4) == (N, w) Dy(w) (75)

N >
x(N,w)= [] - 2*en!

mit 24 An(8n2+1)r(N, w) . (76)

Dy und @y sind demnach bis auf eine nullstellen-
freie ganze Funktion in ihrem analytischen Verhal-
ten in bezug auf o gleich. Insbesondere gilt: die
Nullstellen von Dy und von @y sind dieselben, d. h.
es 1st

@y (N) =w,(N). (77)

Da die Konvergenz der w,(N) fiir wachsende N in

H. STUMPF, F. WAGNER UND F. WAHL

§ 3 ausfiihrlich bewiesen wurde. so folgt aus

lim w,(N) =, (78)
N—> oo
wegen (77) lim @,(N) =w,, (79)

N—> oo
was zu beweisen war.
Eine gewisse Schwierigkeit entsteht erst dann,
wenn man den Grenzilbergang N— oo nicht im
Sinne der numerischen Rechnung auffalit, sondern
an Dy theoretische Untersuchungen ausfithren will.
Wegen
lim %(N, w) =

N— oo

(80)

ist die Folge der Determinanten Dy divergent. Die
Determinanten Dy und die Systeme (70) sind daher
fiur theoretische Untersuchungen ungeeignet, fiir
numerische Rechnungen aber brauchbar.

Das Ergebnis laflit sich daher folgendermallen
zusammenfassen:

Obwohl sowohl die Folge der Determinanten der
abgebrochenen ¢-Gleichungssysteme als auch deren
Losungsvektoren divergieren, konvergiert die Folge
der zu den abgebrochenen Gleichungssystemen ge-
horigen Eigenwerte auf den Grenzwert der Eigen-
werte des unendlichen Systems.

Verzichtet man daher auf die logisch inkonsistente
Forderung (69) und definiert das N.T.D.-Verfahren
allein durch die Folge der abgebrochenen Gleichungs-
systeme (70), so kann man feststellen: Die N.T.D.-
Approximation liefert betm anharmonischen Oszilla-
tor eine Folge von Eigenwerten, welche gegen das
tatsichliche Spektrum des t- bzw. ¢-Systems kon-
vergiert.

In dieser Feststellung ist bemerkenswert, daf} zu-
nédchst nur von einer Konvergenz des N.T.D.-Spek-
trums gegen die Eigenwerte des unendlichen 7- bzw.
@-Systems die Rede ist. Dal} ferner das Spektrum
des 7- bzw. ¢-Systems mit dem Eigenwertspektrum
der ScHRODINGER-Gleichung des anharmonischen Os-
zillators zusammenfallt, ist aus physikalischen Griin-
den anzunehmen. In einer strengen Theorie muf} ein
solcher Nachweis aber auch formal erbracht werden,
insbesondere im Hinblick auf die Tatsache, daB} die
Sakularpolynome der 7- bzw. ¢-Systeme auch fiir
negative w = (E—E,;), d.h. also fiir physikalisch
sinnvolle Werte Nullstellen besitzen. Die genaue
Diskussion des Zusammenhangs zwischen den Eigen-
werten der ScHRODINGER-Gleichung und jenen der
zugeordneten 7- bzw. @-Systeme verschieben wir je-
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doch auf weitere Arbeiten. da eine derartige Unter-
suchung iiber den Rahmen des hier gestellten Pro-
blems hinausgeht. In dieser Arbeit beschranken wir
uns auf den numerischen Nachweis; d.h. es wird
nicht nur gezeigt, daBl die Nullstellenfolgen der ab-
gebrochenen 7- bzw. ¢-Determinante gegen Grenz-
werte konvergieren, sondern auch. daf} diese Grenz-
werte mit den Eigenwerten der ScHRODINGER-Glei-
chung iibereinstimmen. Wir verweisen dazu auf die
Diskussion der numerischen Ergebnisse im folgen-
den Paragraphen.

§ 6. Numerische Ergebnisse

Wie schon zu Beginn erwiahnt, haben wir uns in
der gesamten Darstellung auf die Zustidnde positiver
Paritit beschrankt, da die Zustande negativer Paritat
vollkommen analog behandelt werden konnen. Auch
die nachfolgenden numerischen Ergebnisse beziehen
sich daher allein auf die Zustidnde positiver Paritat.

Um die Nullstellen der Determinanten (49) wirk-
lich auszurechnen, benotigen wir die Werte fir E,
und 4. Das Auftreten von E,, das der Tamm—Dan-
corr-Methode in der Feldtheorie an sich fremd ist,
hédngt mit dem Umstand zusammen, daf} beim an-
harmonischen Oszillator der Zustandsraum allein in
der p- bzw. g-Darstellung aufgebaut werden kann.
Wegen der Teilchen-Antiteilchenzustinde tritt eine
derartige Reduktion der Zustidnde in der Feldtheorie
nicht auf, man ist daher auch nicht, wie in unserem
Fall, gezwungen, den Hamirron-Operator zur Elimi-
nation uberzahliger Matrixelemente zu verwenden,
was gerade auf E; fithrt. £, kann im bisherigen
Rahmen der Theorie der 7- bzw. ¢-Gleichungs-
systeme nicht bestimmt werden 2. Wir verwenden
einen durch numerische Integration der ScHRODIN-
Ger-Gleichung bestimmten Wert von E,=0.,420806
(s. Anm. 13), Was den Faktor 4 betrifft. so ist die-
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ser in der Transformationsmatrix (22) zunichst vol-
lig willkiirlich, und die Sikulardeterminante diirfte
an sich iiberhaupt nicht von A4 abhingen, da bei
einer Transformation die Sikulardeterminanten in-
variant bleiben. Allerdings handelt es sich in diesem
Fall um unendliche Determinanten, so daB eine ge-
sonderte Untersuchung dieser Behauptung fiir den
Grenziibergang N— ~ notig wire. Bricht man
andererseits das unendliche ¢-System bei N Glei-
chungen ab, so wird die Transformationsinvarianz
zerstort, und die Determinanten der abgebrochenen
Systeme héngen von A ab, wobei die Abhiingigkeit
unter den eben erwihnten Einschrinkungen aller-
dings fiir N — o wieder herausfallen miiite. Fiir
endliche N wird es daher zunichst einen optimalen
Wert von 4 geben, fiir den die Approximation am
giinstigsten ausfallt. Nach der einzeitigen Wick-Regel
muf} bei kanonischer Vertauschung 4=1/2 sein.
Verwendet man diesen Wert in der Transformations-
matrix (22) und den eben angegebenen Wert fiir
Ey . so erhalt man eine w-Abhéngigkeit des Sakular-
polynoms, die fiir eine Auswahl aus den ersten 20
Determinanten in Abb. 1 aufgetragen wurde. Die
erste Naherung @, (w) hat eine Nullstelle fiir posi-
tive @ bei 2,89, @,(w) besitzt zwei Nullstellen bei
2,56 und 7,71, P;(w) drei Nullstellen bei 2,52,
6,47 und bei 12,1. Jede weitere Naherung bringt
eine zusitzliche Nullstelle und verbessert die bis-
herigen Eigenwerte. Zum Vergleich wurden die Null-
stellen des anharmonischen Oszillators in der w-
Skala durch direkte numerische Integration aus der
ScroDINGER-Gleichung bestimmt !4, siehe Tab. 1.

In ihr werden die mittels der ScHrODINGER-Glei-
chung bestimmten w-Werte (erste Spalte) mit den
Polynom-Néaherungen N=3, N=7 und N =10 auf-
gefithrt. In Abb. 2 und Abb. 3 wird die Giite der
Approximation an die tatsdchlichen Eigenwerte des
anharmonischen Oszillators graphisch dargestellt.

SCHRGDINGER-GL. N=3 I N=1 N=10
Eo— 0420806  wso— 2538068  2,527220  2,538080  2,538070
Es— 2958874  wg = 6,032747  6,475200  6,028250  6,032810
Ey—= 6453553 @ wep = 10,107105
Ee— 10,527911 w2 — 3,494679  3,505640 | 3,496200  3,494620
Tab. 1.

12 Man benotigt dazu den Summensatz, welcher eine vollstin-
dige Quantentheorie voraussetzt.
13 K. Lacarvy, Privatmitteilung.

14 Rechnung auf der IBM-Rechenanlage 7090 des Instituts
fiir Plasmaphysik, Garching bei Miinchen.
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Abb. 1. Dy (w)/N?® in Abhingigkeit von @ und N.

Zugleich wurde zusitzlich der Wert von 4 variiert,
um festzustellen, welchen Einfluf} eine solche Varia-
tion auf die Approximationsgiite hat. Die Kurven

+10°

4-70'2 *
O
_’70-6 L
07—
-1074E
-1073+
-107?L
-107"+
-10°
Abb. 2. Fehler .;Iwy,,: (w‘:rw

I. Verbesserung des Eigenwertes von w32, im Laufe der Ni-
herung N=1, 2, ... gegeniiber dem exakten Wert wy, .
Fiir N=7 ist die Fehlergrenze 7-10—% der Maschinen-
rechnung erreicht.

II. Analog wie I, diesmal fiir w3, gegeniiber dem exakten
Wert wg= (E;—E,). Diese Rechnung ist also fiir hohere
Ubergangselemente ausgefiihrt worden, s. Anmerkung 3!
Bei Iund Il ist A=%.

in Abhingigkeit von N.

o)

+10°
o70—’ [

Abb. 3. Fehler Awyy= (w3 —ws,) in Abhingigkeit von N
und 4. Dieselben Bemerkungen wie bei I und II, hier bezogen
auf Aw,,. Bei III wurde 4=0,8, bei IV wurde 4=0,2 ge-
setzt. Die Wahl von 4 beeinfluBt fiir niedrige Ndherungen die
Approximationsgiite merklich.

werden dort abgebrochen, wo die Anndherung an
die wirklichen Werte unter die Rechengenauigkeit
von Aw = 7-107% fillt. Wie man sieht, konvergieren
die Nullstellen des 7- bzw. ¢-Systems ungeheuer
rasch auf Grenzwerte, welche mit den Eigenwerten
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der ScHRGDINGER-Gleichung iibereinstimmen. wie in
§ 5 behauptet wurde.

Neben den physikalischen Nullstellen besitzen die
@y bzw. die Dy auch unphysikalische Nullstellen.
Da der Grad von Dy in w gleich 2 N ist, wobei aber
nur N physikalische Nullstellen auftreten diirfen,
muf} es also auch NV unphysikalische Nullstellen ge-
ben. Untersucht man zunichst dieses Problem nume-
risch, so stellt man fest, dal bei diesen Nullstellen
keine Konvergenz auftritt; die ,,Geister“-Nullstellen
laufen vielmehr bei hoheren Ndherungen vom nega-
tiven in den positiven Bereich der w-Achse hiniiber.
Ein solches Verhalten steht aber nicht im Wider-
spruch zum Konvergenzbeweis des § 3. Dort wurde
namlich das Sakularpolynom in der WEIERSTRASS-
schen Produktdarstellung angeschrieben, wobei null-
stellenfreie ganze transzendente Funktionen in (37)
als konvergenzerzeugende Faktoren auftreten. Eine
solche Darstellung ist aber nur im limes N — oo
méglich. Fiir jedes endliche NV konnen die nullstellen-
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freien Konvergenzfaktoren nur durch Polynome
approximiert werden. Diese Polynome sind aber fiir
endliche N nicht nullstellenfrei. Sie verlieren ihre
Nullstellen erst im Grenziibergang N — o . Es ist
daher zu vermuten, dafl die beobachteten ,,Geister*-
nullstellen mit jenen approximierten Konvergenz-
faktoren zusammenhangen, und dafl im Grenziiber-
gang N — o nur noch die physikalischen Nullstel-
len iibrigbleiben. Da es sich um eine naheliegende,
aber unbewiesene Vermutung handelt, ist eine wei-
tere Untersuchung dieses Problems nétig.

Herrn Prof. Dr. W. Heisensere und Herrn Dr. Dirr
danken wir fiir das der Themenstellung entgegenge-
brachte freundliche Interesse und eine Diskussion der
Arbeit auf das Beste. Ebenfalls danken wir Herrn K.
Lacarry fiir eine Diskussion der Ej-Abhingigkeit von
(12) und seine Hilfe bei der Programmierung der nu-
merischen Rechnung. Dem Institut fiir Plasmaphysik
in Garching danken wir fiir die auf der IBM-Rechen-
anlage 7090 zur Verfiigung gestellte Rechenzeit.



