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Zur Konvergenz der einzeitigen Tamm-Dancoff-Methode 
beim anharmonischen Oszillator 
V o n H . S T U M P F * , F . W A G N E R * u n d F . W A H L * * 

( Z . Natur f o r s chg . 19 a, 1 2 5 4 — 1 2 6 7 U961J ; e i n g e g a n g e n am 13. Mai 1964) 

As in the usual quantum field theory, the states, and therefore also the eigenvalue spectrum of 
an anharmonic oscillator can be characterized by means of the so-called r-functions, that is the 
matrix element of the type (0 | qn /') . For the calculation of these matrix elements, the equation 
of motion of the anharmonic oscillator can be used to obtain an infinite set of equations, which 
define an eigenvalue problem. To solve it a new set of functions, the so-called <jr-functions, are 
introduced by means of a transformation, whose matrix corresponds formally to the W I C K rule. 
An analysis of this infinite system of ^-equations shows that a convergent secular polynomial can 
be obtained, which exists as a limiting value of the polynomials for the truncated N qr-equation-
systems in the limit N —>• oc . It is therefore permissible to calculate the eigenvalues of the infinite 
system in an approximate way from the truncated systems. Such an approximation procedure is the 
essential content of the so-called TAMM—DANCOFF method. The above mentioned convergence of the 
determinants therefore provides its justification. The convergence of the eigenvalues of the trun-
cated systems to the exact oscillator values is numerically examined up to I\ = '20. The results are 
satisfactory. 

In der neueren Entwicklung der Physik spielen 
Modellbetrachtungen eine große Rolle: Durch sie 
werden komplizierte Problemstellungen sowohl phy-
sikalischer als auch mathematischer Natur auf ge-
wisse wesentliche Analogievorgänge reduziert und 
damit einer erfolgreichen Untersuchung zugängig 
gemacht. So wurde z. B. der harmonische Oszillator 
von P L A N C K , H E I S E N B E R G U. a. als Modell zur Ent-
wicklung der Quantenmechanik und der relativisti-
schen Quantentheorie der freien Felder benutzt. In 
ähnlicher Weise kann man mit Einschränkung be-
haupten, daß der anharmonische Oszillator als Mo-
dell für die Entwicklung von nichtlinearen Quanten-
feldtheorien nützlich ist. Dies wurde von H E I S E N -

B E R G 1 und von S Y M A N Z I K 2 gezeigt. Auf beide Arbei-
ten werden wir im Laufe der Untersuchung noch 
näher eingehen. Um die nötige Aktualität der Un-
tersuchung zu gewährleisten, darf der anharmonische 
Oszillator nicht mit den klassischen Methoden der 
S C H R Ö D I N G E R - T h e o r i e behandelt werden. Vielmehr 
muß man der neueren Entwicklung der Feldtheorie 
gemäß Ubergangsmatrixelemente betrachten. Diese 
werden in der Feldtheorie durch Ausdrücke der Art 
(a ty'^i) ...if(xn)' ß) usw. definiert, wobei y-'(x) 
der Feldoperator ist, und (a bzw. ß) die Quanten-
zustände des Feldes charakterisieren. Über die 
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Gründe, die zur Untersuchung derartiger Ausdrücke 
führen, verweisen wir für den Fall kanonischer 
Quantisierung auf S Y M A N Z I K 3, für den Fall nicht-
kanonischer Quantisierung auf S T U M P F 4. Beim an-
harmonischen Oszillator muß man dann sinngemäß 
Matrixelemente der Art (a q(t\) ...q(tn) ß) usw. 
studieren, und aus diesen Matrixelementen physi-
kalische Informationen ableiten. Im Fall eines Sy-
stems mit einem Freiheitsgrad, wie es der anharmo-
nische Oszillator darstellt, also das Zustandsspek-
trum. Das Studium der t bergangsmatrixelemente 
kann mit verschiedenem Komplikationsgrad ausge-
führt werden. Am einfachsten ist die sogenannte 
einzeitige Theorie. Diese Theorie soll im folgenden 
für den anharmonischen Oszillator diskutiert und 
die Ergebnisse dieser Diskussion mit der neuen 
TAMM—ÜANcoFF-Methode verglichen werden. 

§ 1. Einzeitige r-GIeichungssysteme 

Zur Untersuchung der Quantenzustände des an-
harmonischen Oszillators gehen wir in Analogie zum 
feldtheoretischen Verfahren von den Bewegungs-
gleichungen aus. Diese lauten 

q(t)=p(t), p(t) = -qHt). (1) 
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Bei einer kanonischen Quantisierung werden die q{t) 
und p(t) als Operatoren betrachtet, die der gleich-
zeitigen Vertauschungsrelation (mit h = 1) 

i [ p ( 0 , ? ( « ) ] - = 1 (2) 
genügen sollen. In diesem Fall folgt unmittelbar 
durch Integration aus (2) und ( 1 ) , daß der infini-
tesimale Operator der Zeittranslation des Systems, 
die Gesamtenergie H, korrespondenzmäßig dem 
HAMiLTON-Operator der klassischen Theorie ent-
spricht und die Gestalt 

H(t) = $p*(t)+ UHt)+C = H0(t)+C (3) 
besitzt, wobei C eine willkürliche Konstante ist. Im 
Fall einer nichtkanonischen Quantisierung, die hier 
aber nicht betrachtet werden soll, gilt (3) nicht mehr. 
Vorläufig beschränken wir uns auf eine Untersuchung 
mit der kanonischen Vertauschungsrelation ( 2 ) . 
Wiederum im Sinne der Feldtheorie soll diese Un-
tersuchung aber nicht im ScHRÖDiNGER-Bild, d. h. also 
mit H ( 0 ) , sondern im HEisENBERG-Bild, d . h . also 
mit (1) durchgeführt werden. Es ist aber nützlich, 
zur Erleichterung der Rechnung im HEisENBERG-Bild 
gewisse allgemein bekannte Fakten der Quanten-
theorie des ScHRÖDiNGER-Bildes heranzuziehen. Dazu 
zählt zunächst die Tatsache, daß bei kanonischer 
Quantisierung die Quantentheorie durch ihr Verhal-
ten auf einem Zeitschnitt völlig festgelegt ist. Dies 
führt dazu, daß es zunächst ausreicht, im H E I S E N -

BERG-Bild einzeitige Matrixelemente der Form 

lnrn (t) = (a\ sym q* (l) p» (t) | ß) ~ £ |; j (4) 

zu betrachten, wobei unter dem Symbol sym die 
Symmetrisierung des Ausdrucks qn pm in den q und 
p Operatoren zu verstehen ist. Ferner weiß man, daß 
im ScHRÖDiNGER-Bild die Wellenfunktionen des an-
harmonischen Oszillators allein in der q- oder in der 
p-Darstellung vollständig beschrieben werden kön-
nen, und daß es zufolge des HAMiLTON-Operators 
( 3 ) , welcher gegen die Paritätsoperation invariant 
ist, Eigenzustände gerader und ungerader Parität 
geben muß. Die Eigenzustände gerader Parität z. B. 
lassen eine Entwicklung der Art 

2 / ) = 2 > i V Ä ( 0 ) | o ; 
Ä = 0 

in der ^-Darstellung zu, jene ungerader Parität eine 
Entwicklung der Art 

2 7 + i ) = 2 * r + v * + 1 ( o ) | o ) . (6) 

Analoge Entwicklungen gelten für die p-Darstellung. 
Selbstverständlich braucht man nur eine der beiden 
Entwicklungen, um die Eigenzustände zu charakteri-
sieren. Multipliziert man (5) mit (2 v von links, 
so folgt 

k= 0 

(?) 

woraus abzulesen ist, daß zufolge der Hermitezität 
der «^-Operatoren die Bestimmung der r-Funktionen 

T 2 i t = ( 0 | q2k{0) j 2 v) ( 8 ) 

ausreicht, um das Zustandsspektrum der Eigenzu-
stände gerader Parität festzulegen. Entsprechende 
Überlegungen kann man für die Zustände negativer 
Parität mit den ungeraden r-Funktionen T O ^ + I an-
stellen. Da aber diese und alle folgenden Betrach-
tungen keinen Unterschied zum Vorgehen bei Zu-
ständen positiver Parität aufweisen, beschränken 
wir uns im folgenden auf eine Diskussion der Zu-
stände positiver Parität allein. 

Nach diesen Vorbetrachtungen können wir uns 
der direkten Rechnung im H E I S E N B E R G - B I M zuwen-
den. Dazu benötigen wir ein Gleichungssystem für 
die r-Funktionen ( 8 ) . Dieses leitet man am zweck-
mäßigsten mittels einer erzeugenden Operatorfunk-
tion ab. Sie wird durch exq^ definiert, wobei x ein 
willkürlicher Parameter ist. Zweimalige Zeitableitung 
der Operatorfunktion führt auf 

d t-
ex q = r e* q q ö 2

 e
x q 4 - ex q Q2 4 - — ex q 

2 \ ' 2 

(9) 

Da q mit q nicht vertauschbar ist, muß die Ableitung 
von (9) mittels der sogen. HAUSDORFF-Formel durch-
geführt werden, welche das Ergebnis der Differentia-
tionen der einzelnen Koeffizienten der Potenzreihe 
zusammenfaßt. 

Unter Benutzung der Bewegungsgleichungen (1) 
und des HAMiLTON-Operators (3 ) erhält man aus (9) 
durch Koeffizientenvergleich nach Potenzen von x 
die Operatorrelationen (n = 1 , 2 , . . .) 

2 n + 9 » + 2 d L 
dt* (10) 

(5) +2(\n)(H0q2"-Z + q*n-2H0) + 6 ( 2 ; V " - 4 = 0 . 

Bildet man nun Übergangsmatrixelemente von (10) 
zwischen den Zuständen (0 und | 2 v) , so entsteht 
bei Berücksichtigung; der Belation 

k=0 Tojfc (t) = exp{ — i ojv t} (11) 
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mit co,. = E-2v — E0 ein Gleichungssystem für die zur 
Zustandsdarstellung benötigten r-Funktionen (8) 

2n + r2 n + 2 + M" r2 n 

+ 2 ( 2 2 " ) (co + 2 £ 0 ) r 2 n _ 2 + 6 ( 2 4 n ) r 2 n _ 4 = 0 . (12) 

Der Einfachheit halber wurde der Index v an den 
r-Funktionen und an co unterdrückt. Wie man sieht, 
hebt sich aus den r-Gleichungen die willkürliche 
Konstante C von (3) heraus, und es verbleibt nur 
die Nullpunktsenergie E0 im System, welche dem 
Operator H 0 = ^ p2 -f ^ q4 zugeordnet ist 5 . 

Das Gleichungssystem (12) ist nunmehr jenes 
System, das an Stelle der klassischen Matrixmecha-
nik das dynamische Verhalten des quantisierten Sy-
stems charakterisiert. Aus seiner Analyse müssen 
alle physikalischen Informationen gezogen werden, 
in diesem Fall also die verschiedenen Eigenfre-
quenzen und die zugehörigen Eigenvektoren To;t mit 

. 

§ 2. Transformation auf ^-Funktionen 

Wie schon erwähnt, muß die gesamte physikali-
sche Information aus (12) gezogen werden. Abkür-
zend können wir (12) in der Form 

[CO2 önm + anm (co) ] r2 m = 0 (13) 

5 Die r-Gleichungssysteme für allgemeinere r-Funktionen 
T(2*fo) (0), d.h. für Ubergangsmatrixelemente zwischen 
den Zuständen (a | und | ß ) , unterscheiden sich von jenem 
für T 2k nur dadurch, daß an Stelle von E0 der Wert Ea ein-
gesetzt werden muß. Setzt man a=ß , so entsteht anstatt 
des homogenen Systems (12) ein inhomogenes System für 
die Erwartungswerte (a | a) , auf das wir in un-
serem Zusammenhang aber nicht einzugehen brauchen. 

6 Die Tatsache, daß man (13) als ein verallgemeinertes Sä-
kularproblem auffassen muß, ist aus physikalischen Grün-
den naheliegend. Der mathematische Beweis dafür wird im 
folgenden erbracht werden. Abgesehen aber von dem Pro-
blem. ob das spezielle System (13) ein Säkularproblem 
sein kann oder nicht, besteht die verbreitete Meinung, daß 
unendliche zeilenfinite Gleichungssysteme grundsätzlich 
nur Rekursionsformeln darstellen. Dies ist nicht der Fall, 
wie folgende Betrachtungen zeigen: Am einfachsten sind 
die Verhältnisse bei zeilenfiniten, unendlichen Matrizen 
Oik(co) zu durchschauen, welche von einem Eigenwert-
parameter co abhängen und einer v. KocH-Bedingung ge-
nügen. Bei ihnen läßt sich die unendliche Determinante 
det i 0;a-(o>)| definieren. Sofern det I 0j/c(co)| = 0 gilt, hat 
das zugehörige homogene System Oik(co) xk = 0 normier-
bare Lösungen, deren Gesamtheit den HiLBERT-Raum auf-
spannt. Im Gegensatz zu endlichen Gleichungssystemen hat 
das homogene System Oik(co) xk = 0 jedoch audi für 
det | Oik{cx>) | 0 Lösungen. Man muß Oik{co) xk = 0 
dann als Rekursionsformel interpretieren. Enthält die erste 

schreiben. (13) stellt dann ein verallgemeinertes 
Säkularproblem dar, bei dem die zu diagonalisie-
rende Matrix alull(co) an den Eigenwert OJ rüde-
gekoppelt ist6 . Sehen wir zunächst von dieser un-
konventionellen Rückkopplung ab, indem wir co in 
a,nn(oj) als willkürlichen für einen endlichen Wert 
fixierten Parameter betrachten, so stellt man leicht 
fest, daß a,nn{oj) eine unbeschränkte Matrix ist. Eine 
solche Feststellung folgt auch unmittelbar aus der 
physikalischen Betrachtung: Da der anharmonische 
Oszillator ein nichtbeschränktes Spektrum von Eigen-
werten EN besitzt, welche sich aus der Diagonalisa-
tion von anm{co) ergeben müssen, so folgt, daß 
anm(to) notwendig eine unbeschränkte Matrix sein 
muß. Ganz allgemein läßt sich in der Funktional-
analysis beweisen, daß bestimmte Klassen von un-
beschränkten Matrizen Spektraldarstellungen besit-
zen müssen, worunter aus physikalischen Gründen 
offensichtlich auch anm(oj) fällt. Es existieren aber 
gegenwärtig in der Funktionalanalysis keine Metho-
den. um die Spektren von unbeschränkten Matrizen 
direkt zu berechnen. Eigenwerttheorien gibt es bis 
jetzt nur für unbeschränkte Differentialoperatoren. 
Es ist daher nötig, das System (13) in solcher Weise 
umzuformen, daß es einer mathematischen Behand-
lung mit gegenwärtig bekannten Methoden zugängig 
wird. Der erste Schritt in diesem Prozeß wird durch 
die Transformation von den r-Funktionen auf die 
^-Funktionen vollzogen. 

Zeile die unbekannten . . . , xn , so bilden in der Rekur-
sionsformel x1, . . . , xn -1 die willkürlichen Anfangspara-
meter, welche zusammen mit dem frei variablen co den 
Lösungsvektor bestimmen. Dieser liegt dann aber nicht 
mehr im HiLBERT-Raum der Eigenvektoren, sondern ist 
nicht normierbar. Die Lösungsvektoren sind also divergent. 
Analoge Verhältnisse bestehen bei zeilenfiniten unbe-
schränkten Matrizen, welche durch Algebraisierung von 
HAMiLTox-Operatoren entstehen, z. B. des anharmonischen 
Oszillators bei Entwicklung nach harmonischen Oszillator-
funktionen. Obwohl in solchen Fällen keine Determinante 
mehr existiert, ist von der Konfigurationsraumdarstellung 
die Existenz von Eigenwerten und normierbaren Eigenvek-
toren erwiesen. Für Nichteigenwerte kann man, wenn man 
will, derartige Systeme dann als Rekursionsformeln auf-
fassen. die divergente Lösungsvektoren besitzen. 
Ist umgekehrt ein zeilenfiniter Operator vorgegeben, so 
erhellt aus dem oben Gesagten, daß man nicht von vorn-
herein die Möglichkeit eines Eigenwertproblems ausschlie-
ßen darf. Vielmehr ist dies ein Problem, das durch Analyse 
des Operators entschieden werden muß. Das heißt, man 
muß untersuchen, ob sich ein Säkularproblem ausblenden 
läßt. Dies geschieht aber nicht durch Forderungen an die 
Lösungsvektoren, sondern durch Transformation des Ope-
rators auf eine Gestalt, welche die Möglichkeit des Säkular-
problems evident macht. Dies ist im wesentlichen das in 
dieser Arbeit zur Verwendung kommende Verfahren. 
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Man zerlegt dazu die Operatoren <7(0) und p ( 0 ) 
in die Operatoren 

<7(0)=: 2~1 /s[a(0) + a+(0) ] , 

p ( 0 ) = — i 2 - 1 / s [ a ( 0 ) — a + ( 0 ) ] , (14) 

wobei o ( 0 ) und a + (0 ) die Vertauschungsregel 

[a (0 ) , a+ (0) ] _ = 1 (15) 

erfüllen. Dann wird q" (0) ein gemischtes Produkt 
aus den nichtvertauschbaren a ( 0 ) - und a"(0)-Opera-
toren. Ordnet man ein solches Produkt derart um. 
daß alle a (0) -Operatoren links von den a (0)-Ope-
ratoren stehen, so erhält man das normalgeordnete 
oder WicK-Produkt, das man gewöhnlich mit : qn : 
bezeichnet. Wir weisen darauf hin, daß weder (14) 
noch (15) noch die Normalordnung auf den harmo-
nischen Oszillator beschränkt sind. Es handelt sich 
vielmehr um ganz allgemeingültige Operationen für 
Systeme mit einem Freiheitsgrad. Wir behaupten 
nun, daß 

ö 2n = y/ iV ( 2 ! 

H ) 11(2 n — 2l) ! 

und 

1=0 
: q 2{n-l) . (16) 

und : q2n : = £ ( -
z=o 

1 V (2 n) ! ,2 (n-J) 
4 / l\(2n-2l) ! (17) 

gilt. Den Beweis führt man in Analogie zur Ableitung 
der r-Gleichungen mittels einer erzeugenden Funk-
tion ea :(a++ö) ? für welche sich die Relation 

ßx{a++a) _ exi/2 ex a+ex a (18) 

beweisen läßt. Durch Koeffizientenvergleich nach x 
folgt dann (16), und in ähnlicher Weise beweist man 
die Umkehrformel ( 17 ) . Multipliziert man (16) und 
(17) von links mit (0 und von rechts mit 2 y) 
und bezeichnet das normalgeordnete Matrixelement 
mit 

cplk = (0\:q^:\2y), (19) 

so geht (16) und (17) in eine lineare Transforma-
tion zwischen den r- und den 99-Funktionen (19) 
über. Ohne den ursprünglichen Ausgangspunkt der 
Operatorrelationen (16) und (17) zu berücksichti-
gen, kann man dann diese Transformation zwischen 
den r- und den ^-Funktionen als einen autonomen 
Vorgang auffassen. Im Hinblick auf die Möglichkeit 
einer Verallgemeinerung dieser WicK-Regel ist es da-
bei zweckmäßig, daß man den Faktor ( 1 / 4 ) ' durch 
(A/2)1 mit einem willkürlichen A ersetzt. So ent-
stehen aus (16) und (17) die Relationen 

tin =Cnk(A) cplk (20) 

mit 

<pln = Cnk{ — A) X 2k 

Cnk(A) = <2»>! ^ n ~ k 

(21) 

(22) 
(2fc)! (n-k) ! 

Für k > n verschwindet (22) per definitionem des 
Fakultätsausdrucks. Faßt man die xln (n = 0, 1 , . . .) 
als Lösungsvektor des Zustands 2 y) auf, so be-
schreibt (20) und (21) eine lineare Transformation 
zwischen den r- und den (p-Vektoren. Diese lineare 
Transformation ist nicht ausgeartet. Man kann daher 
das System (13) von der r-Darstellung auf die cp-
Darstellung transformieren, ohne seinen mathemati-
schen Inhalt zu zerstören. Man erhält unter Anwen-
dung von (20) und (21) aus (13) das System 

[co2 önm + Cni1 (A) a,j (co) Cjm(A) ] cp\m = 0 (23) 

und unter Berücksichtigung von 

Cnex{A)=Cnl{-A) (24) 

entsteht 

[co2 önm + Bnm (co, A) ] (plm = 0 (25) 

mit 

Bnm{w,A) = {2n + \) ndn + hm + 2An(8n2+l) önm 

6 / 2 
2 n [ 3 z l 2 ( 8 n 2 - 8 n + 3) - 2 ( c o + 2 £ 0 ) ] d n _ h i 

+ 4 ! ( 2 4 n ) [ 4 z P ( „ - l ) - i ] < 5 n _ 2 > ) (26) 

Es fragt sich nunmehr, ob das transformierte System 
(25) zur mathematischen Behandlung besser geeig-
net ist als ( 1 3 ) . Dieses Problem werden wir im 
nächsten Paragraphen ausführlich diskutieren. Zu-
nächst soll hier nur noch auf die bisher bekannt ge-
wordenen Lösungsvorschläge eingegangen werden. 
Diese bestehen einerseits aus der sogen, neuen T A M M — 

ÜANcoFF-Methode, andererseits aus der sogen. Funk-
tionalgleichungsmethode. Bei der neuen T A M M — D A N -

coFF-Methode geht man von der Beobachtung aus, 
daß beim harmonischen Oszillator, bei dem die r-
Funktionen und die 99-Funktionen direkt berechnet 
werden können, die r-Funktionen durch 

4n=[(2y) (harmon. Osz.) (27) 

gegeben werden, die gc-Funktionen dagegen für den 
exakten Wert von A = 1/2 nach (21 ) , (22) und (27) 
durch 

<pln = [ (2y ) ! ] 1 / j <5 n y , (harmon. Osz.) (28) 
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Dies bedeutet, daß die r-Funktionen des harmoni-
schen Oszillators für keinen Eigenwert normierbare 
Vektoren darstellen, wogegen die (^-Funktionen für 
alle endlichen Eigenwerte normiert werden können. 
In Analogie schließt man daraus, daß auch für den 
anharmonischen Fall ähnliche Verhältnisse vorliegen 
müßten, d. h. daß es sich bei den anharmonischen 
r-Funktionen um nichtnormierbare. bei den ^-Funk-
tionen dagegen um normierbare Vektoren handeln 
sollte. Da unendliche Gleichungssysteme mit normier-
baren Eigenlösungen unter bestimmten Bedingungen 
abgebrochen und somit durch endliche Gleichungs-
systeme approximiert werden können, so werden in 
der neuen TAMM-D,\NCOFF-Methode die ^-Gleichun-
gen (15) einfach abgebrochen und die (^-Funktionen 
für ein k > A"0 gleich Null gesetzt. Von H E I S E N B E R G 1 

wurden die Oszillatoreigenwerte am cf.-Gleichungs-
system in der p-g-Darstellung in erster, zweiter und 
dritter Näherung mit gutem Erfolg berechnet. Es ist 
aber klar, daß ein solches Vorgehen noch einer tie-
feren Rechtfertigung bedarf, da es auf einer ad hoc 
Analogie aufgebaut ist. Wir werden darauf im letz-
ten Paragraphen noch genauer eingehen. Von S Y M A N -

ZIK 2 wurde andererseits ein funktionalanalytischer 
Weg eingeschlagen. Wie wir gesehen haben, spielen 
bei der Ableitung der r- und der ^-Gleichungssysteme 
die erzeugenden Funktionen e x ( .a + + a ) bzw. e1 q<^> eine 
bedeutsame (wenn auch mehr technische) Rolle. Es 
lieg t daher nahe, nicht die aus den erzeugenden 
Funktionen bzw. Funktionalen hervorgehenden r-
bzw. ^-Gleichungen, sondern die Funktionale selbst 
zu studieren. S Y M A N Z I K betrachtet dazu die Größen 

faß(x,y) = (a\e — / a \ Pixq+iyp 
ß). ( 2 9 ) 

Für diese Größen kann man mittels der Bewegungs-
gleichungen (1) und des HAMiLTON-Operators (3), 
sowie der Vertauschungsrelationen (2) Differential-
gleichungen in x und y für (24) aufstellen. Für den 
Fall des harmonischen Oszillators gelingt die direkte 
Integration dieser Gleichung, für den Fall des an-
harmonischen Oszillators versucht S Y M A N Z I K in Ana-
logie zum Übergang vom r- zum 9?-Gleichungssystem 
aus faß einen konvergenzerzeugenden Faktor abzu-
spalten. Es ist jedoch bisher nicht möglich gewesen, 
eine Lösung für die resultierenden Gleichungen an-
zugeben, da strenge Lösungen nicht bekannt sind 
und numerische Lösungen von Randbedingungen 
ausgehen müßten, die ebenfalls unbekannt sind. Bei 
der nachfolgenden Behandlung des <p-Gleichungs-
systems werden wir Methoden benutzen, die wahr-

scheinlich kein Analogon in der funktionalanalyti-
schen Betrachtung aufweisen, so daß der direkten 
Untersuchung des <7-Gleichungssystems vor dem 
funktionalanalytischen Verfahren von uns der Vor-
zug gegeben wird. 

§ 3. Reduktion auf Systeme mit konvergenten 
Säkularpolynomen 

Im vorangehenden Paragraphen wurde das r-Glei-
chungssystem (13) auf das r^-Gleichungssystem (25) 
transformiert. Man erkennt aber leicht, daß der 
Übergang von den r- zu den ^-Funktionen noch 
keine mathematische Behandlung des Eigenwert-
problems mit den gegenwärtig bekannten Methoden 
zuläßt. Sieht man zunächst von der OJ-Abhängigkeit 
der Matrix Bnm in (26) ab und betrachtet co in Bnm 

als Parameter, so stellt das transformierte Glei-
chungssystem (25) genau wie das Ausgangssystem 
(13) ein Säkularproblem konventioneller Art für 
den unbeschränkten Operator to, ö tj dar. Daraus 
folgt, daß auch die Matrix Bnm notwendig unbe-
schränkt sein muß. was unmittelbar aus (26) abge-
lesen werden kann. Um das Eigenwertproblem trotz-
dem zu berechnenen. muß man demnach durch eine 
weitere Operation die konventionelle Form des Sä-
kularproblems (13) bzw. (25) beseitigen. Dies ge-
schieht durch die Abbildung ' 

(2 n) ! / 
9^2 n = <Pn ( 3 0 ) 

und gleichzeitige Multiplikation der n-ten Gleichung 
von (25) mit [2 ( n ! ) / ( 2 n) !] [An(8 rr + 1) ] . 
Das Gleichungssystem (25) geht daraufhin über in 

A/im(co,A) cp'm = 0 (31) 
- 3 

mit Afim(co, A) = Va,,(n, co, A) dn + k, m ( 3 2 ) 
A' = l 

wobei die a/,. (n, co, A) durch 

, 4 (2 n + 1)2 

A (8 n- +1) 

a0(n, co, A) =4 2 co2 

nA(8 n2 +1) 

7 Bei einer Abbildung wird der Vektor allein transformiert, 
bei einer Transformation dagegen die gesamte Gleichung 
auf ein anderes Bezugssystem transformiert. Welche der 
beiden Auffassungen für eine Vektortransformation ein-
genommen wird, ist, sofern nicht geometrische Invarianzen 
vorhanden sind, eine Frage der mathematischen Zweck-
mäßigkeit. 
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a _ i ( n , co, A) = [3 A (8 n2 - 8 n + 3) 

8 n - + l 

a_2(n,co,A) = [ 8 # ( n - l ) 2 4 ( n - l ) ] ^ * - . 
(8 re-+1) A 

, a-, zJ3(n-l) (n-2) /qq\ 
8 n-+1 

definiert werden. 

Wie man durch Inspektion von (31) und (33) 
erkennt, hat man dadurch die konventionelle Form 
des Säkularproblems für co, die notwendig auf eine 
unbeschränkte Matrix führen muß, beseitigt und 
ein Eigenwertproblem von allgemeinerem Typus ge-
schaffen. Dieses Problem besteht in einer Ausdeh-
nung der allgemeinen Theorie linearer Gleichungs-
systeme mit endlich vielen Variablen auf solche mit 
unendlich vielen. Verschwindet für endlich viele 
Freiheitsgrade die Determinante des Systems, so ist 
das homogene System lösbar, andernfalls nur das 
inhomogene. Das Verschwinden der Determinante 
eines solchen Systems in Abhängigkeit von einem 
Parameter, z. B. co, definiert daher ein verallgemei-
nertes Säkularproblem für diesen Parameter. In die-
sem Sinne soll (31) nunmehr untersucht werden. 
Aus (33) folgt unmittelbar, daß Anm(co, A) für alle 
endlichen co ein beschränkter Operator ist. Diese 
Eigenschaft reicht im allgemeinen jedoch nicht aus, 
um das unendliche Gleichungssystem (31) einer Be-
handlung in Analogie zur Theorie endlicher Glei-
chungssysteme zugängig zu machen. Dazu müssen 
nach dem gegenwärtigen Stand der Theorie unend-
licher Gleichungssysteme die sogen, v. KocHSchen 

Bedingungen erfüllt sein, welche die Existenz der 
unendlichen Determinante det Anm j sicherstellen. 
Läßt sich nämlich eine derartige Determinante sinn-
voll definieren, so ist es mit ihrer Hilfe möglich, die 
CRAMERSche Regel und damit die Theorie endlicher 
Gleichungssysteme auf (31) zu übertragen. Da aber 
die v. KocHschen Bedingungen nur hinreichende Be-
dingungen darstellen, so ist nicht ausgeschlossen, 
daß in Spezialfällen auch unendliche Matrizen, wel-
che keiner v. KocHschen Bedingung genügen, die De-
finition einer unendlichen Determinante zulassen 
und sinnvolle Lösungsvektoren besitzen. Wir zeigen 
im folgenden, daß die Matrix Anm 

(a>,A) derartige 
Eigenschaften besitzt, und daß damit das Eigenwert-
problem für co einen wohldefinierten Sinn erhält. 
Wir beginnen mit der Determinantendefinition und 
behandeln die zugehörigen Eigenvektoren im folgen-
den Paragraphen. 

Zur Definition der unendlichen Determinante ver-
wenden wir die klassische Methode der Determinan-
tenfolgen: Das System (31) wird bei N Zeilen und 
Spalten abgebrochen. Die zugehörige Determinante 
Dv ist dann als Determinante eines endlichen Sy-
stems eindeutig definiert. Sodann untersucht man 
lim D\ und definiert den Grenzwert, sofern vor-

handen, als Wert der unendlichen Determinante 
det Anm . Das Studium der Folge D\ ist nur mög-
lich. wenn man eine Vorschrift zur Berechnung von 
Dy angeben kann, welche die viel zu komplizierte 
direkte Berechnung von D^ aus der Definitionsfor-
mel zu umgehen gestattet. Diese Vorschrift besteht 
in unserem Falle aus einer Rekursionsformel. Die 
Abschnittsdeterminante D y wird durch 

D\ = det Anm(co, A) j (n, m = 1 , . . . , N) (34) 

definiert. Entwickelt man Anm in (34) nach der letz-
ten Spalte und verfährt ebenso mit den dabei auf-
tretenden Unterdeterminanten, so ergibt die Zusam-
menfassung dieser viermal zu wiederholenden Pro-
zedur die Rekursionsformel 

-DN + a0(N) D.v-i-aJV- 1) a.^N) Dv_, 
+ a 1 ( J V - l ) a±(N-2) a.2(N) Z>jV_3 (35) 
- a i ( N - 1) ax{N-2) a 1 ( A r - 3 ) a_ 3 ( /V) D v _ 4 = 0, 
wobei wir zur Abkürzung für ak{N, co, A) nur ak (N) 
geschrieben haben. Die Rekursionsformel gilt ab 
N ]> 5 . Die Determinanten Dx... Z)4 müssen direkt 
ausgerechnet werden. 

Betrachtet man die Rekursionsformel (35) als ein 
Gleichungssystem für die Unbekannten D5 .. . D\ , 
so kann man V—> oo gehen lassen und erhält ein 
unendliches Gleichungssystem, dessen Lösungsvektor 
Dn (N = 5, 6, . . .) die gewünschte Folge von Deter-
minanten liefert. 

Zur Diskussion der Lösungen dieses Systems kann 
man sich den ganzzahligen Index N zunächst durch 
eine reelle Variable x ersetzt denken, wodurch (35) 
in eine Differenzengleichung vierter Ordnung über-
geht. Die Lösungen der Differenzengleichung stim-
men dann bei geeignet gewählten Anfangsbedingun-
gen für ganzzahlige x mit den Lösungen der Rekur-
sionsformel (35) überein. Da sämtliche Koeffizien-
ten ak(N) rationale Funktionen von N und damit 
auch von x sind, so ist die (35) zugeordnete Diffe-
renzengleichung eine Gleichung mit rationalen Ko-
effizienten 8 . Das sogen, charakteristische Polynom 

8 E. NÖRLUND , Differenzengleichungen, Verlag Springer, Ber-
lin 1924, Kap. 1 1 - 1 3 . 
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dieser Gleichung besitzt eine vierfache Nullstelle, 
und die Gleichung weist daher einen Punkt der Un-
bestimmtheit auf. Diese Eigentümlichkeit, welche 
ihren Ursprung in der WICK-Regel hat, ist ganz 
wesentlich: Hätte das charakteristische Polynom 
einen Punkt der Bestimmtheit, so könnte durch 
lim D \ (co) kein Säkularproblem für co definiert 

A ' - * oo 

werden, weil die zugehörige Asymptotik dies ver-
hindern würde. Andererseits werden für einen Punkt 
der Unbestimmtheit die Lösungen durch komplizierte 
NEWTONsche bzw. Fakultätenreihen dargestellt, deren 
oj-Abhängigkeit schwierig zu analysieren ist. Wir 
werden daher nicht den Versuch unternehmen, die 
Lösungen D\(AJ) explizit darzustellen. Es ist viel-
mehr zweckmäßig, sich auf funktionentheoretischem 
Wege Informationen über die co-Abhängigkeit von 
D\(OJ) im limes N—> oc zu verschaffen, wobei wir 
dann nur ein einziges, allerdings sehr wesentliches 
Theorem aus der Theorie der Differenzengleichungen 
verwenden werden. Für den funktionentheoretischen 
Ansatz stellt man zunächst mittels der Rekursions-
formel (35) fest, daß D.v(co) ein Polynom 2 V-ten 
Grades in OJ sein muß. Nach dem Fundamentalsatz 
der Algebra folgt daraus, daß sich DY(oj) in der 
Form 

2AT 

DX(OJ) =C(N) II (Ü)a(N)-co) ( 3 6 ) 
a = 1 

schreiben lassen muß. wobei coa (V) (a = 1, . . . , 2 TV) 
die Nullstellen des Polynoms sind. Der Wert co = 0 
kann keine Nullstelle des Polyoms sein, da dieser 
Wert dem inhomogenen System der Vakuumerwar-
tungswerte der r-Funktionen zugeordnet ist, zu 
deren eindeutiger Berechnung die Dy(0)=f=0 sein 
müssen. Im Hinblick auf den Grenzübergang V—> oo 
schreiben wir (36) in die Form 

DY(CO) = r ( V , c o ) <£v(co) (37) 

um, wobei wir nach dem WEiERSTRASSschen Produkt-
satz 0 .v (w) durch 

= 1 7 ( l - •) e x p { / ( V , a, co) } (38) a=l V <Oa(N) I 

definieren, und r(N, co) durch 
2 Ar 

r(N, co) =C(N) IIexp{ — f(N, a, co) } c o a ( V ) . (39) 
a= 1 

Die Funktionen e x p { / ( V , a, c o ) } werden entspre-
chend dem WEiERSTRASSschen Theorem als konver-

genzerzeugende Faktoren hinzugefügt. Sie tragen zu 
den Nullstellen von Z)y(oj) nichts bei. Sofern 

lim ü)a(N) = oja (40) 
N-* oo 

für alle a gilt, folgt unmittelbar daraus 

l i m fPN(co) = <I>{OJ) ( 4 1 ) N-+OO 

mit <P(OJ) als einer ganzen Funktion, cl. h. also einer 
Funktion, welche für alle endlichen co einen end-
lichen Wert annimmt. Damit ist der limes von D\(co) 
wohldefinierbar als 

lim DN{OJ) = lim r(N, co) lim $A - (co) 
N-* oo A'—*• oo A —<- oo 

= (P [OJ) lim r (N, co). (42) 
7V-> oo 

Da der Faktor r(N,co) stets nullstellenfrei ist, lie-
fert unter der Voraussetzung (40) die Formel (42) 
also ein wohldefiniertes Säkularproblem in co. ES 
verbleibt demnach der Nachweis der Relation (40) 
als eigentliches Problem. Wie in (40) gefordert, 
braucht man nur den limes N—> oc zu betrachten. 
Für sehr große N genügt Z)y(co) der aus (35) und 
(33) ableitbaren asymptotischen Gleichung 

DN(CO) - 4 D V _ ! ( C O ) +6DN.2(OJ) ( 4 3 ) 

- 4 ^)Z)V_3M +DN_4(co) = 0 

mit = — (4 A) ~2. Diese asymptotische Gleichung 
benutzen wir nun für den Beweis von ( 4 0 ) . Wir 
demonstrieren das Beweisverfahren zunächst an einer 
sehr groben Näherung. Wir denken uns die Null-
stellen oJa (V) nach steigenden Beträgen geordnet, 
so daß für alle N eine Anordnung der Art 

> J l ( / V ) < ' o , 2 ( V ) ; < . . . < ! 0J2X(N)\ ( 4 4 ) 

gelten möge (der Einfachheit halber nehmen wrir nur 
einfache Nullstellen an). Sodann betrachten wir eine 
sehr kleine Umgebung des Nullpunktes der co-Ebene. 
Dann setzen wir näherungsweise in dieser Umgebung 

£ M c o ) « r ( / V , 0 ) ( l - - ? L - ) , (45) 
\ co^N) / 

wobei sich die konvergenzerzeugenden Faktoren im 
Produkt mit jenen von r(N, OJ) gegenseitig weg-
heben, so daß nur r{N. 0) als Faktor übrigbleibt. 
Zur Abkürzung setzen wir im folgenden 

r(N, 0) = r(N) . 

Setzen wir ferner zaN = 1 /oja(N), so ist (45) unter 
der Annahme gültig, daß ztN > zaN (a = 2 , . . . , 2 N) 
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erfüllt ist. Diese Annahme setzen wir zunächst vor-
aus. Substituiert man dann (45) in ( 4 3 ) , so ergibt 
ein Koeffizientenvergleich nach co die beiden Glei-
chungen 

r(N) — 4 r(/V — 1) + 6 r(N — 2) 

- 4 ( l + ^ } j r ( y V - 3 ) + r ( V - 4 ) = 0 , 

zxNr(N) - A z ^ r i N - l ) + 6 zxN~2 r(N — 2) 

- 4 ( l + kx ^ZlN-3r(N- 3) +z1ßf~4r(JV-4) = 0 . 

(46) 

r(N) muß demnach simultan den beiden Gin. (46) 
genügen. Faßt man diese Gleichungen als Differen-
zengleichungen auf, so ist eine notwendige Bedin-
gung für die Existenz einer simultanen Lösung die 
Übereinstimmung der charakteristischen Polynome 
der beiden Gleichungen. Diese Übereinstimmung be-
steht aber nur, wenn 

ZlN = ZiN-v = 4 ) ( 4 7 ) 

gilt. Da andererseits r(N) nach Ableitung eine simul-
tane Lösung von (46) sein muß, muß auch (47) 
gelten. Daraus folgt aber unmittelbar 

lim coj (N) = co j . (48) 
N-*- 00 

Nunmehr kann man unter Berücksichtigung von (48) 
dasselbe Verfahren für a>2(N) ausführen usw., bis 
man schließlich die Gültigkeit von (40) für sämt-
liche a erwiesen hat. Das geschilderte Verfahren ist 
nur insofern unvollkommen, als in den Beweis die 
Voraussetzung zxN > zaN (a = 2 , . . . , 2 N) usw. ein-
geht. Diese Voraussetzung ist jedoch nicht wesent-
lich: Um dies einzusehen, befreien wir uns rekursiv 
davon. Das heißt, wir nehmen zunächst an, daß 
zxN, z2">ZaN (a = 3 , . . . , 2 N) erfüllt ist. Wir ver-
mindern also unsere Annahme um eine Ungleichung. 
Unter dieser Voraussetzung erhält man dann für 

9 Vermutlich läßt sich der Renormierungsfaktor r(N) auch 
als Determinante einer unendlichen Matrix Knm definie-
ren, so daß der Zerlegung Z)/v = r(iV) <PN im Gleichungs-
system (31) die Abspaltung eines konvergenzerzeugenden 
Matrixfaktors entsprechen würde. Nimmt man die Existenz 
einer solchen Matrix Knm an, so wäre 

r (AO = det | Knm \ (n, m = l,.. ., N) 
und man könnte zufolge der Zerlegung 

Anm — Knm + Vnm 
durch die Transformation 

Vm <Pr 

D\(co) in einer kleinen Umgebung des Nullpunktes 
der oj-Ebene 

D Ä < o ) ) » r ( ^ ) [ l + 0 + (49) 
Koeffizientenvergleich in co ergibt, daß r(N) simul-
tan drei Differenzengleichungen erfüllen muß. Dies 
ist in Analogie zur vorangehenden Argumentation 
nur dann möglich, wenn die Relationen 

r N 4- r N —7 4- 7 N-v Z1 1 z2 — Z1 22 ' 
z1jvZ2n = Z1n-"Z2n-" (50) 

erfüllt sind. Diese Relationen sind aber nur für 
zxN = zxN~v und z2n = z2n~~v erfüllbar, woraus wie-
derum die Konvergenz folgt. Analog kann man wei-
tere Ungleichungen aufgeben. Hat man insgesamt 
o Ungleichungen aufgegeben, d. h. setzt man nur 
zxN, ...,ZoN>ZaN (a = Q+l,...,2N) voraus, so 
erhält man durch Koeffizientenvergleich genau o 
Gleichungen für die Zahlen zxN~v, . .. , züN~v, deren 
rechte und linke Seiten für verschiedene v strukturell 
völlig gleich sind. Wie in (50) folgt daraus unmit-
telbar zxN = zxN~v,..., z6n = zeN~v usw., so daß man 
erkennt, daß mit dem angegebenen Verfahren die 
Relation (40) ohne zusätzliche Voraussetzungen be-
wiesen werden kann. Wir haben demnach hier einen 
Fall vor uns, bei dem die nur beschränkte Matrix 

bis auf einen nullstellenfreien „Renor-
mierungsfaktor" eine wohldefinierte unendliche De-
terminante besitzt, deren Nullstellen gegen Grenz-
werte konvergieren. Zufolge dieser Nullstellenkonver-
genz kann man daher das Säkularproblem (31) durch 
die Folge der abgebrochenen Systeme approximieren, 
wobei man im limes 7V-> 00 die Lösung des unend-
lichen Systems (31) erhält. Daß mit der Nullstellen-
konvergenz auch eine Eigenvektorkonvergenz vor-
handen ist, werden wir im nächsten Paragraphen 
zeigen. Das Problem, das r-Gleichungssystem in ein 
mathematisch faßbares Säkularsystem umzuwandeln, 
ist daher durch die Anwendung der Transformation 
(20) und der Abbildung (30) sowie durch den Kon-
vergenzbeweis gelöst9. 

das Gleichungssystem (31) in 
[önp+VnmK-],] <p'r'= 0 

überführen, wobei 
det | dnp+Vnm K~\ | = $N (n, m, p = l , . . . , N) 

sein müßte. Ein solches Gleichungssystem würde dann die 
Anwendung der FREDHOLM-Theorie gestatten und daher 
einen weiteren Konvergenzbeweis liefern. Diese Frage soll 
in weiteren Arbeiten genauer untersucht werden. 
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§ 4. Absehätzung der Nullstellen- und 
Eigenvektorkonvergenz 

Zusätzlich zum Konvergenzbeweis der Nullstellen-
folgen C0a(N) im vorangehenden Paragraphen ist 
eine Abschätzung der Stärke dieser Konvergenz mög-
lich. Wiederum beschränken wir uns auf den Fall 
sehr großer N. Wir müssen aber, um zusätzliche In-
formationen zu § 3 zu erhalten, diesmal auch die 
asymptotischen Glieder zweiter Ordnung in (35) 
berücksichtigen. Unter Einschluß dieser Glieder lau-
tet dann die zu (35) gehörige asymptotische Glei-
chung 

Dn(CO) - 4 A V - i ( « ) + 6 ( l + 

= 0 . (51) 

Die Konstanten k1 . . . kann man direkt numerisch 
aus (35) berechnen. Wir unterdrücken hier jedoch 
ihre explizite Angabe, da die speziellen Werte von 
kx .. .ki für das folgende ohne Belang sind, mit 
Ausnahme der Tatsache, daß kx . . . &4 + 0 gilt. 

In Gl. (51) setzen wir nun den Wert von D\(CO) 
an der speziellen Stelle OJ = oja ein, wobei OJA nach 
(40) der Grenzwert von oja(N) sei. Nach (36) ist 
Dx(oJa) gleich 

DN(oja) =C(N) FL (o)ß(N)-oja). (52) 

Um aus dem Ansatz (52) mittels der Gl. (51) 
Schlüsse über die Art der Nullstellenkonvergenzen 
ziehen zu können, ist es nötig, die einzelnen Fakto-
ren von (52) in ihrer Abhängigkeit von TV näher zu 
untersuchen. Schreibt man zur Abkürzung 

ojß{N) - oja = dß (TV), (53) 

so sind die Folgen dß(N) zufolge der Konvergenz 
der OJß (N) gegen die Grenzwerte ojß ebenfalls kon-
vergent. d. h. es gilt 

lim dß(N) = d^ß . (54) 
N-+oc 

Da die Zahlen dß(N) für ß = ^ a gegen Grenzwerte 
dß streben, welche =h 0 sind, und im allgemeinen 
sogar sehr große Werte annehmen, wenn man die 
Eigenwerte oja und ojß mit dem Spektrum des an-
harmonischen Oszillators identifiziert, so setzen wir 
wegen der bewiesenen Konvergenz näherungsweise 
dß(N) « dß in (52) ein. Für ß = a dagegen kann 

man eine solche Näherung nicht vornehmen, da die 
dl(N) eine Nullfolge sind. Wegen der aus (39) 
folgenden Relation 

C(N) =r(N) [ f f ü),.(N)]~l (55 ) 
V=1 

läßt sich (52) daher in der Gestalt schreiben 
9 A' 9 N 

DN(0Ja) ^ r ( N ) dl ( N ) [ 7 7 M W 1 7 1 d*ß . ( 5 6 ) 

Setzt man nun entsprechend unserer für die dß(N) 
verwendeten Näherung auch OJv(N) « O J , • und beach-
tet, daß für große TV und festes a zufolge der An-
ordnung (44) (o>x + k) d*x+k(k= 1 , . . . , 4) gegen 
1 strebt, so ergibt Substitution von (56) in (51) 
bei gleichzeitigem Herauskürzen aller gemeinsamen 
Faktoren die Gleichung 

r(N) dl(N) - 4 r ( / V - l ) d%(N-l) 

+ 6^1+ ]j±-\r(N-2) dl(N-2) 

- 4 ( l + £ + r(N — 3) d^ (N — 3) 

+ ( l + J 2 ) r ( / V - 4 ) ^ ( / V - 4 ) = 0 . (57) 

Zur Konvergenzabschätzung setzen wir nun 

OJa(Q) - oja(,Q+ 1 ) = x * . ( 5 8 ) 

Dann gilt zufolge (53) und (58) 
00 

d*(N + k)=Y (59) 
g=N+k 

(59) kann man nun in (57) eintragen und nach den 
neuen Variablen Xg umordnen, wrobei man zur Re-
duktion der entstehenden Ausdrücke die von r(N) 
erfüllte Gl. (46) benutzt. Wir schreiben das Ergeb-
nis dieser Umformung nicht explizit an. sondern 
dividieren sogleich die entstandene Gleichung durch 
r(N). Nun setzen wir als Hypothese voraus, daß der 
limes N 0 0 von r{N)/r(N- 1) existiert10. So-
fern er existiert, folgt aus der asymptotischen Gl. 
(46) sofort, daß er gleich 1 sein muß. Die Gl. (57) 
geht damit in 

— + 3 X y - 2 - 3 ( l + + 

i- 00 

q = N 

10 Bei entarteten Wurzeln der charakteristisdien Gleichung 
existiert dieser limes nur unter gewissen Stabilitätsvoraus-
setzungen, s. N Ö R L U N D 8, S. 306. 
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über, wobei wir auf der linken Seite die Glieder 
zweiter Ordnung, d. h. die Glieder mit N~2, ver-
nachlässigt haben. Diese Gleichung hat aber die 
konvergente Lösung 

a const 0 ( 1 \ ( 6 1 ) 

N2 \N3 J 

womit eine Abschätzung des Konvergenzgrades der 
Nullstellen durchgeführt ist. Wie schon in § 3 an-
gekündigt, untersuchen wir schließlich noch das Ver-
halten der den Eigenwerten o j a (N) zugeordneten 
Eigenvektoren. Auch hier können wir uns für den 
Konvergenzbeweis bei endlichem a auf das asympto-
tische Verhalten der Eigenvektoren beschränken. Wir 
setzen zunächst in (31) den speziellen Eigenwert 
co = o)a ein, wobei (31) in 

Anm((Oa,A) cp* = 0 (62) 

übergeht, cp * sei dann der Eigenvektor zum Eigen-
wert C0a . Bekanntlich ist ein solcher Eigenvektor nur 
bis auf eine multiplikative Konstante bestimmt; d. h. 
mit (pm ist auch c<pnf ein Eigenvektor. Um diese 
Willkür zu beseitigen, kann man an Stelle der cpm 
die Verhältnisse 

& =( fm/ (p [* (63) 
betrachten. Diese sind nunmehr eindeutig festgelegte 
Größen. Zu ihrer Berechnung dividieren wir (62) 
durch cpix und nehmen die Substitution n = v, 
m = u + 1 usw. Damit geht (62) in 
oo 

2 AKu(cOa,A) = - Avl(cüa,A) 
(v = 1 , . . . , oo) ( 6 4 ) 

über. Um die Indizierung deutlich zu charakterisie-
ren, haben wir ausnahmsweise an Stelle der Sum-
menregel explizit das Summationszeichen verwendet. 
Man erkennt sofort, daß es sich bei (64) um ein 
System mit einer beschränkten Matrix handelt. Die 
Determinante der Matrix A, u (oja, A) ist ungleich 
Null, wie man aus der Formel 

d e t | A , ( c o a , J ) | = / 7 4(2 , + 2 ) - ( 6 5 ) 
V = 1 ZI (8 + 

entnimmt. Die Gin. (64) können daher aufgelöst 
werden. Es genügt dabei den limes fx — o o zu be-
trachten. Man erhält dafür aus (64) die asymptoti-
sche Relation 

(66) 

Wie schon bei der Determinantenrekursionsformel, 
so kann man auch (66) als eine Differenzengleichung 

in u auffassen, welche für ganzzahlige ju die ge-
wünschten Lösungen liefert. Das charakteristische 
Polynom dieser Gleichung ist ebenfalls entartet, und 
zwar hat es die vierfache Wurzel t = ^ A. Nach einem 
Satz von P E R R O N 11 gilt in diesem Fall 

n 
lim sup Vi | = M (67) 
fl-*- OO 

oder (68) 

wobei £ beliebig klein ist. Für A < 2 ist dieses 
dann quadratsummabel. Da das physikalische A = \ 
ist, so hat man im physikalischen Bereich der W I C K -

Regel auch die Konvergenz der Eigenvektoren nach-
gewiesen, womit die Existenz eines Lösungssystems 
von Eigenwerten und Eigenvektoren für (31) end-
gültig nachgewiesen ist. 

§ 5. Rechtfertigung der N .T.D.-Approximation 

Die im vorangehenden durchgeführten Betrach-
tungen ermöglichen uns nun, die von H E I S E N B E R G 

benutzte N.T.D.-Approximation für den Fall des an-
harmonischen Oszillators streng zu rechtfertigen. 
Wir rekapitulieren dazu nochmals kurz die Methode 
der N.T.D.-Approximation. 

Wir gehen vom Gleichungssystem (25) aus. Für 
dieses System wird 

cp2m = 0 , m>N (69) 

gefordert, wobei N eine fixierte ganze Zahl sein soll, 
und an Stelle von (25) wird das endliche Gleichungs-
system 

N 

2 [<ü2 dnm + Bnm(ai, A)] <p2m = 0 ( 7 0 ) 
m= 1 

betrachtet. Die Eigenwerte 6J0(N) folgen dann aus 
der Determinante von (70) durch die Bedingung 

det | co2 dnm + Bnm(co, A) | = DN(co, A) = 0. (71) 

Es wird behauptet, daß 

lim ü)0 (N) = cjOq (72) 
N-+ oo 

gegen die tatsächlichen Eigenwerte des Systems kon-
vergiert. 

Wir betrachten zunächst die Forderung ( 6 9 ) . 
Aus (68) zusammen mit (30) folgt, daß 

l i m l ^ h ^ - ' f - l r o + o " (73) 
m—*-oc cn. \ — / 

11 loc. cit. 8, S. 309-310. 
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wird. Die bei der N.T.D.-Approximation vorausge-
setzte Relation (69) ist demnach nicht gültig. Dies 
tut aber der Gültigkeit der N.T.D.-Methode selbst 
keinen Abbruch, da die Relation (69) völlig über-
flüssig ist und nicht vorausgesetzt werden muß. Es 
genügt vielmehr, nur die Folge der abgebrochenen 
Gleichungssysteme (70) zu betrachten, ohne eine 
Aussage über die Konvergenz der (^-Funktionen 
hinzuzufügen. 

Um diese Aussage zu bekräftigen, ist es wichtig 
zu bemerken, daß die Forderungen (69) und (70) 
nicht logisch konsistent sind, da (69) zusätzlich zu 
(70) noch weitere Gleichungen, nämlich 

N 

^ [CO2 Km + Bnm(0J, A) ] <p2 m = 0 
m=1 (n = N + l , . . . , oo) ( 7 4 ) 

impliziert, welche bei innerer Konsistenz von (69) 
und (70) erfüllt werden müßten. Das bedeutet einen 
Widerspruch, da die <p-2m bereits aus (70) eindeutig 
bestimmt sind. Beim praktischen Vorgehen werden 
die Zusatzbedingungen (74) ignoriert, vom theore-
tischen Standpunkt dürfen derartige Zusatzbedin-
gungen aber überhaupt nicht gestellt werden. Als 
den eigentlichen Inhalt der N.T.D.-Methode betrach-
ten wir daher nicht die Aussage der Relation (69 ) , 
sondern die Frage der Konvergenz der Eigenwerte 
des abgebrochenen Gleichungssystems (70) gegen 
die Eigenwerte des unendlichen Gleichungssystems 
(25 ) . Um dieses Problem zu behandeln, untersuchen 
wir zunächst jene Größe, aus der die Eigenwerte ab-
geleitet werden. Dies ist Dy (co, A). Der Wert dieser 
Determinante kann leicht berechnet werden, indem 
man vom ^-Funktionensystem zum cp -Funktionen-
system übergeht. Unter Berücksichtigung der Deter-
minantenmultiplikationsregeln bei der Abbildung 
von <p auf cp' folgt unmittelbar 

5 v ( c o , A) = x(N, co) 0N(w) (75) 

mit x(N, co) = U nJlrr(K, co) . (76) 
n = \ /J"(B n--f-1) 

Dy und <py sind demnach bis auf eine nullstellen-
freie ganze Funktion in ihrem analytischen Verhal-
ten in bezug auf co gleich. Insbesondere gilt: die 
Nullstellen von Dy und von <£>y sind dieselben, d. h. 
es ist 

(be(N)=o)0{N). (77) 

Da die Konvergenz der co 0 (N) für wachsende N in 

§ 3 ausführlich bewiesen wurde, so folgt aus 

l im Ü)0(N) =<OO ( 7 8 ) 
N-roo 

wegen (77) lim co0 (N) = coQ, (79) 
N - + oo 

was zu beweisen war. 
Eine gewisse Schwierigkeit entsteht erst dann, 

wenn man den Grenzübergang N o o nicht im 
Sinne der numerischen Rechnung auffaßt, sondern 
an Dy theoretische Untersuchungen ausführen will. 
Wegen 

lim x (N, OJ) = oo (80) 
y~>. oo 

ist die Folge der Determinanten Dy divergent. Die 
Determinanten Dy und die Systeme (70) sind daher 
für theoretische Untersuchungen ungeeignet, für 
numerische Rechnungen aber brauchbar. 

Das Ergebnis läßt sich daher folgendermaßen 
zusammenfassen: 

Obwohl sowohl die Folge der Determinanten der 
abgebrochenen <^-Gleichungssysteme als auch deren 
Lösungsvektoren divergieren, konvergiert die Folge 
der zu den abgebrochenen Gleichungssystemen ge-
hörigen Eigenwerte auf den Grenzwert der Eigen-
werte des unendlichen Systems. 

Verzichtet man daher auf die logisch inkonsistente 
Forderung (69) und definiert das N.T.D.-Verfahren 
allein durch die Folge der abgebrochenen Gleichungs-
systeme ( 7 0 ) , so kann man feststellen: Die N.T.D.-
Approximation liefert beim anharmonischen Oszilla-
tor eine Folge von Eigenwerten, welche gegen das 
tatsächliche Spektrum des r- bzw. <p-Systems kon-
vergiert. 

In dieser Feststellung ist bemerkenswert, daß zu-
nächst nur von einer Konvergenz des N.T.D.-Spek-
trums gegen die Eigenwerte des unendlichen r- bzw. 
99-Systems die Rede ist. Daß ferner das Spektrum 
des r- bzw. 95-Systems mit dem Eigenwertspektrum 
der ScHRÖDiNGER-Gleichung des anharmonischen Os-
zillators zusammenfällt, ist aus physikalischen Grün-
den anzunehmen. In einer strengen Theorie muß ein 
solcher Nachweis aber auch formal erbracht werden, 
insbesondere im Hinblick auf die Tatsache, daß die 
Säkularpolynome der x- bzw\ 99-Systeme auch für 
negative oo=(E — E0), d .h . also für physikalisch 
sinnvolle Werte Nullstellen besitzen. Die genaue 
Diskussion des Zusammenhangs zwischen den Eigen-
werten der ScHRÖDiNGER-Gleichung und jenen der 
zugeordneten r- bzw. 99-Systeme verschieben wir je-
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doch auf weitere Arbeiten, da eine derartige Unter-
suchung über den Rahmen des hier gestellten Pro-
blems hinausgeht. In dieser Arbeit beschränken wir 
uns auf den numerischen Nachweis; d. h. es wird 
nicht nur gezeigt, daß die Nullstellenfolgen der ab-
gebrochenen r- bzw. gr-Determinante gegen Grenz-
werte konvergieren, sondern auch, daß diese Grenz-
werte mit den Eigenwerten der SCHRÖDINGER -Gle i -

chung übereinstimmen. Wir verweisen dazu auf die 
Diskussion der numerischen Ergebnisse im folgen-
den Paragraphen. 

§ 6. Numerische Ergebnisse 

Wie schon zu Beginn erwähnt, haben wir uns in 
der gesamten Darstellung auf die Zustände positiver 
Parität beschränkt, da die Zustände negativer Parität 
vollkommen analog behandelt werden können. Auch 
die nachfolgenden numerischen Ergebnisse beziehen 
sich daher allein auf die Zustände positiver Parität. 

Um die Nullstellen der Determinanten (49) wirk-
lich auszurechnen, benötigen wir die Werte für E0 

und A . Das Auftreten von E0, das der T A M M — D A N -

coFF-Methode in der Feldtheorie an sich fremd ist, 
hängt mit dem Umstand zusammen, daß beim an-
harmonischen Oszillator der Zustandsraum allein in 
der p- bzw. ^-Darstellung aufgebaut werden kann. 
Wegen der Teilchen-Antiteilchenzustände tritt eine 
derartige Reduktion der Zustände in der Feldtheorie 
nicht auf, man ist daher auch nicht, wie in unserem 
Fall, gezwungen, den HAMiLTON-Operator zur Elimi-
nation überzähliger Matrixelemente zu verwenden, 
was gerade auf E0 führt. E0 kann im bisherigen 
Rahmen der Theorie der r- bzw. <j:-Gleichungs-
systeme nicht bestimmt werden1 2 . Wir verwenden 
einen durch numerische Integration der S C H R Ö D I N -

GER-Gleichung bestimmten Wert von E0 = 0 .420806 
(s. A n m . 1 3 ) . Was den Faktor A betrifft, so ist die-

ser in der Transformationsmatrix (22) zunächst völ-
lig willkürlich, und die Säkulardeterminante dürfte 
an sich überhaupt nicht von A abhängen, da bei 
einer Transformation die Säkulardeterminanten in-
variant bleiben. Allerdings handelt es sich in diesem 
Fall um unendliche Determinanten, so daß eine ge-
sonderte Untersuchung dieser Behauptung für den 
Grenzübergang TV —> oc nötig wäre. Bricht man 
andererseits das unendliche ^-System bei TV Glei-
chungen ab. so wird die Transformationsinvarianz 
zerstört, und die Determinanten der abgebrochenen 
Systeme hängen von A ab, wobei die Abhängigkeit 
unter den eben erwähnten Einschränkungen aller-
dings für N o c wieder herausfallen müßte. Für 
endliche TV wird es daher zunächst einen optimalen 
Wert von A geben, für den die Approximation am 
günstigsten ausfällt. Nach der einzeitigen WicK-Regel 
muß bei kanonischer Vertauschung A = \/2 sein. 
Verwendet man diesen Wert in der Transformations-
matrix (22) und den eben angegebenen Wert für 
E0 , so erhält man eine co-Abhängigkeit des Säkular-
polynoms, die für eine Auswahl aus den ersten 20 
Determinanten in Abb. 1 aufgetragen wurde. Die 
erste Näherung ( P l ( ( o ) hat eine Nullstelle für posi-
tive co bei 2,89, besitzt zwei Nullstellen bei 
2,56 und 7,71, 0 3 ( c o ) drei Nullstellen bei 2,52. 
6,47 und bei 12,1. Jede weitere Näherung bringt 
eine zusätzliche Nullstelle und verbessert die bis-
herigen Eigenwerte. Zum Vergleich wurden die Null-
stellen des anharmonischen Oszillators in der co-
Skala durch direkte numerische Integration aus der 
ScRÖDiNGER-Gleichung bestimmt14 , siehe Tab. 1. 

In ihr werden die mittels der ScHRÖDiNGER-Glei-
chung bestimmten co-Werte (erste Spalte) mit den 
Polynom-Näherungen TV = 3. TV = 7 und TV = 1 0 auf-
geführt. In Abb. 2 und Abb. 3 wird die Güte der 
Approximation an die tatsächlichen Eigenwerte des 
anharmonischen Oszillators graphisch dargestellt. 

S C H R Ö D I N G E R - G 1 . N = 3 N = 7 N = 10 

E0 = 0,420806 
= 2,958874 

E4 = 6,453553 
E6 - 10,527911 

W20 = 2,538068 
CÜ40 = 6,032747 
c«60 = 10,107105 
ö>42 = 3,494679 

2,527220 
6,475200 

3,505640 

2,538080 
6,028250 

3,496200 

2,538070 
6,032810 

3,494620 

Tab. 1. 

12 Man benötigt dazu den Summensatz, welcher eine vollstän- 14 Rechnung auf der IBM-Rechenanlage 7090 des Instituts 
dige Quantentheorie voraussetzt. für Plasmaphysik, Garching bei München. 

1 3 K . L A G A L L Y , Privatmitteilung. 
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Zugleich wurde zusätzlich der Wert von A variiert, 
um festzustellen, welchen Einfluß eine solche Var ia -
tion auf die Approx imat ionsgüte hat. D ie Kurven 

Abb. 2. Fehler Jcoy x= {co^— <x>,ix) in Abhängigkeit von A'. 
I. Verbesserung des Eigenwertes von a>20 im Laufe der Nä-

herung N = l, 2 , . . . gegenüber dem exakten Wert a>20 • 
Für N= 7 ist die Fehlergrenze 7 - 1 0 - 5 der Maschinen-
rechnung erreicht. 

II. Analog wie I, diesmal für CO42 gegenüber dem exakten 
Wert ioi2= {E4 — E2). Diese Rechnung ist also für höhere 
Übergangselemente ausgeführt worden, s. Anmerkung 5 ! 
Bei I und II ist A = $ . 

Abb. 3. Fehler z]a>20 = (ft)^ — co20) in Abhängigkeit von N 
und A. Dieselben Bemerkungen wie bei I und II, hier bezogen 
auf zlco20. Bei III wurde A = 0,8, bei IV wurde zl =0 ,2 ge-
setzt. Die Wahl von A beeinflußt für niedrige Näherungen die 

Approximationsgüte merklich. 

werden dort abgebrochen, w o die Annäherung an 
die wirklichen Werte unter die Rechengenauigkeit 
von Am = 7 • 1 0 ~ 5 fällt. W i e man sieht, konvergieren 
die Nullstellen des r- bzw. ^ -Systems ungeheuer 
rasch auf Grenzwerte, welche mit den Eigenwerten 

Abb. 1. D\(co)/N3 in Abhängigkeit von o und N. 
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der ScHRÖDiNGER-Gleichung übereinstimmen, wie in 
§ 5 behauptet wurde. 

Neben den physikalischen Nullstellen besitzen die 
<Z>.v bzw. die D\> auch unphysikalische Nullstellen. 
Da der Grad von Dy in co gleidi 2 N ist, wobei aber 
nur N physikalische Nullstellen auftreten dürfen, 
muß es also auch N unphysikalische Nullstellen ge-
ben. Untersucht man zunächst dieses Problem nume-
risch, so stellt man fest, daß bei diesen Nullstellen 
keine Konvergenz auftritt; die „Geister"-Nullstellen 
laufen vielmehr bei höheren Näherungen vom nega-
tiven in den positiven Bereich der co-Achse hinüber. 
Ein solches Verhalten steht aber nicht im Wider-
spruch zum Konvergenzbeweis des § 3. Dort wurde 
nämlich das Säkularpolynom in der W E I E R S T R A S S -

schen Produktdarstellung angeschrieben, wobei null-
stellenfreie ganze transzendente Funktionen in (37) 
als konvergenzerzeugende Faktoren auftreten. Eine 
solche Darstellung ist aber nur im limes N—> oo 
möglich. Für jedes endliche V können die nullstellen-

freien Konvergenzfaktoren nur durch Polynome 
approximiert werden. Diese Polynome sind aber für 
endliche N nicht nullstellenfrei. Sie verlieren ihre 
Nullstellen erst im Grenzübergang Noc . Es ist 
daher zu vermuten, daß die beobachteten „Geister"-
nullstellen mit jenen approximierten Konvergenz-
faktoren zusammenhängen, und daß im Grenzüber-
gang N o c nur noch die physikalischen Nullstel-
len übrigbleiben. Da es sich um eine naheliegende, 
aber unbewiesene Vermutung handelt, ist eine wei-
tere Untersuchung dieses Problems nötig. 

Herrn Prof. Dr. W. H E I S E N B E R G und Herrn Dr. D Ü R R 

danken wir für das der Themenstellung entgegenge-
brachte freundliche Interesse und eine Diskussion der 
Arbeit auf das Beste. Ebenfalls danken wir Herrn K. 
L A G A L L Y für eine Diskussion der £0-Abhängigkeit von 
(12) und seine Hilfe bei der Programmierung der nu-
merischen Rechnung. Dem Institut für Plasmaphysik 
in Garching danken wir für die auf der IBM-Rechen-
anlage 7090 zur Verfügung gestellte Rechenzeit. 


